首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
新型短程硝化反硝化工艺处理高浓度氨氮废水   总被引:1,自引:0,他引:1  
研发了一种新型短程硝化反硝化工艺——ANITATMShunt,它通过特殊的自控系统来控制N2O的释放。采用500 L的SBR中试装置处理消化污泥脱水上清液,经过18个月的稳定运行表明:通过短程硝化反硝化途径可以实现90%的脱氮率,并且释放的N2O不足总脱氮量的0.7%。将通过pH值、温度和在线监测的NO-2-N浓度实时计算的亚硝酸浓度与亚硝酸浓度设定值进行比对,以便对曝气过程进行调控,从而抑制了N2O的释放并实现了对SBR短程硝化反硝化工艺的自动控制。同时证实了在低溶解氧条件下,由氨氧化菌(AOB)在短程硝化反硝化过程中产生的N2O并非与高亚硝酸盐浓度有直接关系,而是与游离亚硝酸浓度有关。  相似文献   

2.
低溶解氧下活性污泥法的短程硝化研究   总被引:22,自引:0,他引:22  
研究了低溶解氧(DO)下,在SBR和CSTR反应器内实现短程硝化的条件及其污泥性状的变化。试验结果表明,当SBR进水氨氮浓度为260mg/L时,氨氧化期间反应器内DO接近零,出水中亚硝酸盐氮占到亚硝酸盐氮和硝酸盐氮总和的80%以上,污泥沉降性能良好(SVI<100mL/g);当CSTR的DO为0.2~0.3mg/L、SRT≤30d时实现了亚硝酸的积累,但运行50d后发生了污泥膨胀,导致污泥流失,硝化效率下降。  相似文献   

3.
为了研究过度厌氧对短程硝化的影响,采用SBR反应器,在pH值为7.2~8.0、温度为(23±0.5)℃的条件下,通过控制不同的厌氧段时间考察了厌氧/好氧交替方式下短程硝化的特点,分析了过度厌氧对亚硝酸盐积累率、亚硝化菌和硝化菌的比耗氧速率、脱氮除磷特性、同步硝化反硝化(SND)率及污泥沉降性的影响。结果显示,两个系统对氨氮的去除率都达到了96%,亚硝酸盐积累率稳定在70%左右,即过度厌氧对短程硝化无明显影响;硝化过程中发生了明显的同步脱氮现象,而且在小于0.4 mg/L的范围内,平均溶解氧浓度越高则SND率越高;除磷率都达到了95%,过度厌氧不会增加厌氧阶段的释磷量,吸磷主要发生在好氧前0.5 h,DO浓度越高则吸磷速率越快;两个系统的污泥沉降性都得到了改善,过度厌氧对抑制丝状菌膨胀的强化作用不大。  相似文献   

4.
两段SBR双污泥系统的短程硝化/反硝化除磷研究   总被引:3,自引:1,他引:2  
针对传统脱氮除磷工艺存在的占地面积大、运行成本高等问题,将短程硝化与反硝化除磷工艺相结合而构建了两段SBR双污泥短程硝化反硝化除磷工艺.在成功启动短程硝化反应器后,亚硝酸盐氮的积累率达到94.23%,系统对氨氮的平均去除率>95%;在以亚硝酸盐氮为电子受体的反硝化除磷菌培养驯化阶段,吸磷率达到了64.44%,同时NO2--N由17.79 mg/L降低为0.05 ms/L,电子受体被完全消耗,基本达到了以NO2--N为电子受体进行反硝化聚磷菌富集的目的.在此基础上,考察了N/P值对系统脱氮除磷效果的影响.结果表明,当N/P为3.0、2.2、1.7时对COD和氨氮的去除效果均较好,对COD的去除率分别为90%、89%、90%,对氨氮的去除率分别为96%、95%和96.7%;当N/P为3.0和2.2时除磷效果良好,平均去除率分别达到了88.5%和91%;而当N/P为1.7时除磷效果明显下降,仅为75.6%.  相似文献   

5.
张云  田猛 《山西建筑》2010,36(16):152-153
指出短程硝化反硝化工艺是目前国内外生物脱氮技术研究应用的热点,通过介绍短程硝化反硝化工艺原理,分析了不同工艺稳定亚硝态氮积累实现短程硝化的工艺控制措施,对短程硝化反硝化工艺今后的研究和应用进行了展望。  相似文献   

6.
为了实现低碳城市污水高效深度脱氮,构建短程反硝化/厌氧氨氧化+硝化颗粒污泥脱氮工艺,研究硝化颗粒污泥的培养策略。结果表明,采用上向流污泥床(USB)反应器以序批式运行,并逐步缩短沉淀时间,成功培养出了硝化颗粒污泥,其中90.52%的污泥颗粒粒径>0.5 mm;颗粒污泥的沉降速度随着粒径的增大而增大,0.5~0.9 mm粒径的颗粒污泥平均沉降速度为15.66 m/h。颗粒污泥形成后,USB反应器的氨氮容积去除速率达到1.31 g/(L·d)。短程反硝化厌氧氨氧化+硝化颗粒污泥工艺的脱氮性能分析结果表明,该工艺脱氮效率高、有机碳源需求量低,适合处理低碳城市污水并实现深度脱氮。  相似文献   

7.
乙酸钠为碳源时的污水反硝化规律研究   总被引:3,自引:0,他引:3  
利用序批式反应器,以CH3 COONa为唯一碳源,对反硝化污泥进行了50 d的长期驯化.之后,利用缓冲溶液将反硝化过程中pH值的上升幅度控制在0.5范围内,研究了不同碳氮比下的反硝化规律.结果表明,无论碳源是否充足,反硝化过程中硝酸盐氮和亚硝酸盐氮的变化趋势基本相同,即反硝化过程中均会出现亚硝酸盐氮积累且随后逐渐消失的现象.硝酸盐氮还原完毕时,亚硝酸盐氮会出现最大积累量,同时反硝化速率出现拐点,速率开始明显加快.当碳氮比从1.0增加到3.7时,反硝化速率明显增加.反硝化菌可过量吸附CH3COONa,因此在以CH3COONa为外加碳源进行反硝化时,即使CH3COONa投加过量,出水COD值也能维持在较低水平.  相似文献   

8.
构建以厌氧(An)、好氧(O1和O2)、缺氧(A1和A2)、快速曝气(O3)单元组成的新型短程硝化同步反硝化除磷工艺。在其中厌氧(An)/缺氧(A1)的运行环境,成功驯化出了一种能以硝酸盐和亚硝酸盐为电子受体的反硝化聚磷菌(DPB),其兼具脱氮与除磷双重功能,实现了一碳两用的目的,节约了能耗和曝气量。通过静态试验发现,亚硝酸盐型反硝化除磷速率为4.78 mg/(L·h),硝酸盐型反硝化速率为6.24 mg/(L·h)。反硝化除磷量占到了系统总除磷量的60%以上,其中缺氧1池就占到了50%。  相似文献   

9.
环境温度下短程硝化反硝化试验研究   总被引:4,自引:1,他引:4  
在环境温度(20~30 ℃)下,通过控制反应体系的曝气量和pH,培养了短程硝化反硝化污泥,成功实现了SBR短程硝化反硝化.试验结果表明,在高pH条件下,有利于NH3-N的氧化,同时NO 2-N的累积率大大增加;降低曝气量可提高NO-2-N在体系中的累积率,控制系统的DO为0.4~0.7 mg/L(曝气量为0.1 L/min)、pH=8.3,在进水NH3-N为50 mg/L时,NO-3-N累积率>70%;高进水NH3-N浓度对硝酸菌有明显的抑制作用,而对亚硝酸菌的影响不大.进水NH3-N为120 mg/L时,NO-2-N累积率可达80%.  相似文献   

10.
硝化颗粒污泥的培养及其硝化性能研究   总被引:2,自引:0,他引:2  
在连续流上流式好氧反应器中接种厌氧颗粒污泥进行硝化颗粒污泥的培养及其硝化性能研究,结果表明,通过逐步提高进水N/C值能培养出高活性硝化颗粒污泥;进水氨氮浓度对系统的硝化性能没有显著影响,系统对氨氮的去除率85%;当氨氮容积负荷0.40kgNH4+-N/(m3.d)时,系统实现短程硝化,亚硝酸盐氮积累率平均高达83%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号