首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quality function deployment (QFD) is a product planning management instrument which has been used in a broad range of industries. However, the traditional QFD method has been criticised much for its deficiencies in acquiring experts’ opinions, weighting customer requirements (CRs) and ranking engineering characteristics (ECs). To overcome the limitations, an integrated analytical model is presented in this study for obtaining the importance ratings of ECs in QFD by integrating decision-making trial and evaluation laboratory (DEMATEL) technique and Vlsekriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method under hesitant fuzzy environment. In particular, the hesitant fuzzy DEMATEL is used to analyse the interrelationships among CRs and determine their weights, and the hesitant fuzzy VIKOR is utilised to prioritise ECs. Finally, the feasibility and practicality of the proposed method are verified by an example regarding the product development of electric vehicle.  相似文献   

2.
Quality function deployment (QFD) is a methodology to ensure that customer requirements (CRs) are deployed through product planning, part development, process planning and production planning. The first step to implement QFD is to identify CRs and assess their relative importance weights. This paper proposes a nonlinear programming (NLP) approach to assessing the relative importance weights of CRs, which allows customers to express their preferences on the relative importance weights of CRs in their preferred or familiar formats. The proposed NLP approach does not require any transformation of preference formats and thus can avoid information loss or information distortion. Its potential applications in assessing the relative importance weights of CRs in QFD are illustrated with a numerical example.  相似文献   

3.
In this paper, both unbalanced linguistic terms and a risk decision-making problem with developers’ bounded rationality are considered; an integrated approach of Quality Function Deployment (QFD) and Cumulative Prospect Theory (CPT) is proposed to help increase customer satisfaction and facilitate product concepts selection. Firstly, QFD is employed to provide a customer-driven tool for developers, which can be used to generate product concept alternatives. Subsequently, enhanced information entropy is utilised to prioritise competing Customer requirements (CRs) based on unbalanced linguistic terms. These terms can be directly processed without being translated into fuzzy numbers, where the risk of information loss in fuzzification can be minimised. Product concept alternatives can be generated based on the outcomes of the subsequent QFD process. Moreover, CPT can be considered as a novel method by incorporating the developers’ psychological characteristics under risk, which can help identify the most relevant product concepts. The cost prospect values of each alternative can be calculated by the function based on the cost reference point. The deficit and profit prospect values can be obtained by aggregating the values and weights of potential results, where functions from the enhanced CPT are used. The order of all alternatives can be ranked based on their overall prospect values. Finally, the proposed approach can be evaluated by a case study concerning the development of a new hydraulic breaker. The deliverables of this study are used to evaluate the relative advantages of the proposed approach over existing multi-attribute utility ones.  相似文献   

4.
In new product development, design teams commonly need to define engineering characteristics (ECs) in a quality function deployment (QFD) planning process. Prioritising the engineering characteristics in QFD is essential to properly plan resource allocation. However, the inherent vagueness or impreciseness in QFD presents a special challenge to the effective calculation of the importance of ECs. Generally, there are two types of uncertain input in the QFD process: human perception and customer heterogeneity. Many contributions have been made on methods to prioritise ECs. However, most previous studies only address one of the two types of uncertainties that could affect the robustness of prioritising ECs. To address the two types of uncertainties simultaneously, a novel fuzzy group decision-making method that integrates a fuzzy weighted average method with a consensus ordinal ranking technique is proposed. An example is presented to illustrate the effectiveness of the proposed approach. Results of the implementation indicate that the robustness of prioritising ECs based on the proposed approach is better than that based on the method of Chen et al. (Chen, Y., Fung, R.Y.K., Tang, J.F., 2006. Rating technical attributes in fuzzy QFD by integrating fuzzy weighted average method and fuzzy expected value operator. European Journal of Operational Research, 174 (3), 1553–1556).  相似文献   

5.
A systematical decision-making approach is constructed for quality function deployment (QFD) in uncertain linguistic situations. The mathematical expression and operation of linguistic terms play important roles in the proposed approach in terms of customer requirements (CRs) and design requirements (DRs) in QFD. First, hesitant fuzzy linguistic term sets are designed to conveniently express uncertain linguistic terms and compute with words after the data derived from customers are pretreated and integrated in the decision-making process. Second, the tolerance deviation is defined to restrict innovatively the deviation range of fuzzy linguistic terms in the assessment stage of relative importance for CRs. Third, information entropy is originally designed to determine the final importance of DRs. Moreover, an empirical study on the research project called vortex recoil hydraulic retarder is conducted to demonstrate the performance of the systematical decision-making approach. The proposed approach can be applied to a wide variety of new product development problems in uncertainty settings.  相似文献   

6.
The use of quality function deployment (QFD) to aid decision making in product planning has gained extensive international attention, but current QFD approaches are unable to cope with complex product planning (CPP) characterized by involving multiple engineering characteristics (ECs) associated with significant uncertainty. To tackle this difficulty, in this paper, fuzzy set theory is embedded into a QFD framework and a novel fuzzy QFD program modelling approach to CPP is proposed to optimize the values of ECs by taking the design uncertainty and financial considerations into account. In the proposed methodology, fuzzy set theory is used to account for design uncertainty, and the method of imprecision (MoI) is employed to perform multiple-attribute synthesis to generate a family of synthesis strategies by varying the value of s, which indicates the different compensation levels among ECs. The proposed methodology will allow QFD practitioners to control the distribution of their development budget by presetting the value of s to determine the compensation levels among ECs. An illustrative example of the quality improvement of the design of a motor car is provided to demonstrate the application and performance of the modelling approach.  相似文献   

7.
This study aims at improving the effectiveness of Quality function deployment (QFD) in handling the vague, subjective and limited information. QFD has long been recognised as an efficient planning and problem-solving tool which can translate customer requirements (CRs) into the technical attributes of product or service. However, in the traditional QFD analysis, the vague and subjective information often lead to inaccurate priority. In order to solve this problem, a novel group decision approach for prioritising more rationally the technical attributes is proposed. Basically, two stages of analysis are described: the computation of CR importance and the prioritising the technical attributes with a hybrid approach based on a rough set theory (RST) and grey relational analysis (GRA). The approach integrates the strength of RST in handling vagueness with less priori information and the merit of GRA in structuring analytical framework and discovering necessary information of the data interactions. Finally, an application in industrial service design for compressor rotor is presented to demonstrate the potential of the approach.  相似文献   

8.
Product planning is one of four important processes in new product development using quality function deployment (QFD), which is a widely used customer-driven approach. In this article, a hierarchical framework for product planning using QFD is developed. To tackle the fuzziness in functional relationships between customer requirements and engineering characteristics (ECs) in product planning, the least squares method is incorporated into fuzzy regression to investigate those functional relationships, by which a more central tendency can be obtained. Furthermore, a fuzzy expected value-based goal programing model is proposed to specify target values of ECs. Different from some fuzzy product planning approaches for QFD, the proposed programing model has unambiguous interpretations. An illustrated example of a quality improvement problem of emulsification dynamite-packing machine design is given to demonstrate the application and performance of the proposed approach.  相似文献   

9.
Quality function deployment (QFD) is a planning and problem-solving tool gaining wide acceptance for translating customer requirements (CRs) into the design requirements (DRs) of a product. Deriving the priority order of DRs from input variables is a crucial step in applying QFD. Due to the inherent vagueness or impreciseness in QFD, the use of fuzzy linguistic variables for prioritising DRs has become more and more important in QFD applications. Existing approaches make use of the associated fuzzy membership functions of linguistic labels based on the fuzzy extension principle. However, an inherent limitation of such fuzzy linguistic approaches is the information loss caused by approximation processes, which eventually implies a lack of precision in the final results. This paper proposes an alternative approach to prioritising engineering DRs in QFD based on the order-based semantics of linguistic information and fuzzy preference relations of linguistic profiles, under random interpretations of customers, design team and CRs. Ultimately, this approach enhances the fuzzy-computation-based models proposed in the previous studies by overcoming the mentioned limitations. A case study taken from the literature is used to illuminate the proposed technique and to compare with the previous techniques based on fuzzy computation.  相似文献   

10.
Quantification for the importance degree of engineering characteristics (ECs) is an essential problem in quality function deployment. In real-world scenario, it is sometimes difficult to directly evaluate the correlation degree between ECs and customer requirements (CRs) as ECs are too abstract. Thus, the target ECs have to be further decomposed into several more detailed basic ECs and organised by a multi-level hierarchical structure. The paper investigates the quantification problem for the importance degree of such target ECs and tackles two critical issues. The first issue is how to deal with the uncertainties including fuzziness and incompleteness involved during the evaluation process. A fuzzy evidential reasoning algorithm-based approach is proposed to tackle this issue and derive the correlation degree between each of the basic ECs and the whole CRs. The second issue is how to deal with the interactions among the basic ECs decomposed from the same target EC during the aggregation process. A λ-fuzzy measure and fuzzy discrete Choquet integral-based approach is proposed to tackle this issue and aggregate these basic ECs. Final importance degree of the target ECs can then be obtained. At the end of this paper, a case study is presented to verify the feasibility and effectiveness of the method we propose.  相似文献   

11.
Quality function deployment (QFD) is an effective method that helps companies analyze customer requirements (CRs). These CRs are then turned into product or service characteristics, which are translated to other attributes. With the QFD method, companies could design or improve the quality of products or services close to CRs. To increase the effectiveness of QFD, we propose an improved method based on Pythagorean fuzzy sets (PFSs). We apply an extended method to obtain the group consensus evaluation matrix. We then use a combined weight determining method to integrate former weights to objective weights derived from the evaluation matrix. To determine the exact score of each PFS in the evaluation matrix, we develop an improved score function. Lastly, we apply the proposed method to a case study on assembly robot design evaluation.  相似文献   

12.
Quality function deployment (QFD) is a customer-oriented tool and is widely applied to design and improve products and services. Determining the importance ratings (IRs) of customer requirements (CRs) is an essential step in QFD application and will affect the quality of product design and improvement. In this study, a group decision-making method is proposed to obtain realistic IRs. Low-carbon environment is considered in recognising CRs. Interval linguistic information (ILI) is used to express the vague evaluations in product improvement. In addition, an interval linguistic weighted arithmetic averaging operator, a normalised formula, and an expected value operator are integrated to deal with evaluation matrices expressed by ILI. A relationship matrix is used reversely to acquire accurate basic IRs (BIRs). The improved cosine method based on ILI is also employed to derive BIRs. The modified entropy method based on ILI is proposed to determine a competitive priority rating (CPR) of a CR. The final IR of every CR can be obtained by integrating its BIR and CPR. Finally, a practical product improvement of turbine engine is provided to illustrate the validity and feasibility of the proposed approach.  相似文献   

13.
Conjoint Analysis (CA) and Quality Function Deployment (QFD) are two popular tools for new product design; marketers frequently use the former and engineers the latter. Typically, in a conjoint study, the attributes and their levels are determined through focus group discussions or market surveys. Sometimes, the market researchers exclude some critical features or include unrealistic attribute levels resulting in infeasible product profiles. Inappropriate selection of attribute levels may render the conjoint study less useful. In QFD, the New Product Development team attempts to identify the technical characteristics (TCs) to be improved (included) to meet the customer requirements (CRs) through a subjective relationship matrix between CRs and TCs. At present there is no methodology that uses the output of QFD to generate feasible product profiles to be used in CA and therefore improve its usefulness. In this paper, QFD is used along with an integer programming (IP) model to determine the appropriate TCs and consequently the right attribute levels. These attribute levels are then used in a conjoint study. It is also proposed to measure the elements of the so-called relationship matrix in QFD in a way so that the right levels of the attributes can be generated from the IP solution. The proposed method is illustrated through a commercial vehicle design problem with hypothetical data.  相似文献   

14.
Quality Function Deployment (QFD) is a powerful tool that translates the Voice of the Customer (VoC) into the Engineering Characteristics (ECs), which are those that can be modified in order to meet the desires of the customer. A main objective of QFD is the determination of target values of ECs; however, the conventional QFD aims only empirically at finding these targets, which makes it difficult for the ECs to be optimum. This paper proposes a novel method for determining optimum targets in QFD. Fuzzy numbers are used to represent the imprecise nature of the judgements, and to define more appropriately the relationships between ECs and Customer Attributes (CAs). Constraints such as cost, technical difficulty and market position are considered. An example of a car door is presented to show the application of the method.  相似文献   

15.
Quality function deployment (QFD) is a planning and problem-solving tool that is renowned for translating customer requirements into the technical attributes of a product. To deal with the imprecise elements in the development process, fuzzy set theory is incorporated into QFD methodology. A novel fuzzy expected value operator approach is proposed in this paper to model the QFD process in a fuzzy environment, and two fuzzy expected value models are established to determine the target values of engineering characteristics in handling different practical design scenarios. Analogous to stochastic programming, the underlying philosophy in the proposed approach is based on selecting the decision with maximum expected returns. Furthermore, the proposed approach considers not only the inherent fuzziness in the relationships between customer requirements and engineering characteristics, but also the correlation among engineering characteristics. These two kinds of fuzzy relationships are aggregated to give the fuzzy importance of individual engineering characteristics. Finally, an example of a quality improvement problem of a motor car design is given to demonstrate the application and performance of the proposed modelling approach.  相似文献   

16.
With increasing concerns on customer needs in today’s competitive market, the issue of incorporating customer requirements into product design arises the interest of both researchers and practitioners. Quality Function Deployment (QFD) is a well-known methodology for customer-driven product design. However, conventionally, QFD analysis has a major challenge in understanding customer needs accurately. Kano’s model, which studies the nature of customer needs, provides a way for a better classification of customer needs. However, seldom research contributions are found in terms of integrating Kano’s model with QFD quantitatively. In this research, a novel integration approach is proposed. At first, Kano’s model is quantified by identifying relationship between customer needs and customer satisfaction (CS). Next, both qualitative and quantitative results from Kano’s model are integrated into QFD. Finally, a mixed non-linear integer programming model is formulated to maximise CS under cost and technical constraints. In this research, an illustrative example associated with the design of notebook computers is also presented to demonstrate the availability of the proposed approach.  相似文献   

17.
Technological innovation and satisfaction of customer needs are the keys to survival and success for firms, especially in global competitive high-tech industries. Since new products are usually a source of new sales and profits, the success of new product development (NPD) is essential to maintain a competitive edge and to make a decent profit in a longer term. Therefore, how to develop products that deliver the quality and functionality customers demand while generating the desired profits becomes an important task for the manufacturers. In this paper, a framework with two phases is constructed for facilitating the selection of engineering characteristics (ECs) for product design. In the first phase, quality function deployment (QFD) is incorporated with the supermatrix approach of analytic network process (ANP) and the fuzzy set theory to calculate the priorities of ECs with the consideration of the interrelationship among factors and the impreciseness and vagueness in human judgments and information. In the second phase, multi-choice goal programming model is constructed by considering the outcome from the first phase and other additional goals, such as NPD cost and manufacturability, in the attempt to select the most suitable ECs. A case study of the product design process of backlight unit (BLU) in thin film transistor liquid crystal display (TFT-LCD) industry in Taiwan is carried out to verify the practicality of the proposed framework.  相似文献   

18.
19.
A new approach to quality function deployment (QFD) optimization is presented. The approach uses the linear physical programming (LPP) technique to maximize overall customer satisfaction in product design. QFD is a customer-focused product design method which translates customer requirements into product engineering characteristics. Because market competition is multidimensional, companies must maximize overall customer satisfaction by optimizing the design of their products. At the same time, all constraints (e.g. product development time, development cost, manufacturing cost, human resource in design and production, etc.) must be taken into consideration. LPP avoids the need to specify an importance weight for each objective in advance. This is an effective way of obtaining optimal results. Following a brief introduction to LPP in QFD, the proposed approach is described. A numerical example is given to illustrate its application and a sensitivity analysis is carried out. Using LPP in QFD optimization provides a new direction for optimizing the product design process.  相似文献   

20.
In the Quality Function Deployment (QFD) process, determining the importance weights for the customer requirements is an essential and crucial process. The Analytic Hierarchy Process (AHP) has been used to determine the importance weights for product planning, but this has occurred mainly in crisp (non-fuzzy) decision applications. However, human judgment on the importance of customer requirements is always imprecise and vague. To make up for this deficiency in the AHP, a fuzzy AHP with an extent analysis approach is proposed to determine the importance weights for the customer requirements. In the method, triangular fuzzy numbers are used for the pairwise comparison of a fuzzy AHP. By using the extent analysis method and the principles for the comparison of fuzzy numbers, one can derive the weight vectors. The new approach can improve the imprecise ranking of customer requirements inherited from studies based on the conventional AHP. Furthermore, the fuzzy AHP with extent analysis is simple and easy to implement to prioritize customer requirements in the QFD process compared with the conventional AHP. This paper uses an example of a hair dryer design to illustrate the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号