首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We address the problem of subchannel and transmission power allocation in orthogonal frequency division multiple access relay networks with an aim to maximize the sum rate and maintain proportional rate fairness among users. Because the formulated problem is a mixed‐integer nonlinear optimization problem with an extremely high computational complexity, we propose a low‐complexity suboptimal algorithm, which is a two‐step separated subchannel and power allocation algorithm. In the first step, subchannels are allocated to each user, whereas in the second step, the optimal power allocation is carried out on the basis of the given subchannel allocation and the nonlinear interval Gauss–Seidel method. Simulation results have demonstrated that the proposed algorithm can achieve a good trade‐off between the efficiency and the fairness compared with two other existing relevant algorithms. In particular, the proposed algorithm can always achieve 100% fairness under various conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
To balance and improve the resource utilization of the orthogonal frequency division multiple access (OFDMA) cellular networks, we switch parts of the edge users in overloaded cell to the adjacent light‐loaded cells by using the inter‐cell relay. The efficiency of traditional load balancing method based on the cell switching is low and in some cases, will occur the collision load problem. In this paper, we propose a new load balancing scheme based on inter‐cell relay in downlink OFDMA cellular networks. Besides, we put forward a new spectrum division scheme to reduce interference and improve spectrum efficiency. According to the formulas derived from the model we established, we can obtain the signal interference ratio and further to calculate the amount of remaining subcarrier and the throughput of the system. Finally, through numerical calculation and simulation, the result shows that the load balancing and spectrum division schemes can remit the resource stress of the overloaded cell and improve the spectrum utilization in adjacent cells.  相似文献   

3.
Efficient packet scheduling in CDMA cellular networks is a challenging problem due to the time variant and stochastic nature of the channel fading process. Selection diversity is one of the most effective techniques utilizing random and independent variations of diverse channels to improve the performance of communication over fading channels. In this paper, we propose two packet scheduling schemes exploiting base station selection diversity in the downlink of CDMA cellular networks. The proposed schemes rely on the limited instantaneous channel state information (CSI) to select the best user from the best serving base station at each time slot. This technique increases the system throughput by increasing multiuser diversity gain and reducing the effective interference among adjacent base stations. Results of Monte Carlo simulations are given to demonstrate the improvement of system throughput using the proposed scheduling schemes. In addition, we investigate fairness issue of wireless scheduling schemes. Due to different characteristics of wireless scheduling schemes, the existing fairness indexes may result in misleading comparison among different schemes. We propose a new fairness index to compare the overall satisfaction of the network users for different scheduling schemes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a study on multicast communications in cognitive radio networks (CRNs)using directional antennas. The objective is to maximize the throughput of the CRN. The spectrum is divided into multiple channels and licensed to the primary network. While the CRN is accessing the spectrum, the interference power is carefully controlled to avoid impacting the operation of the primary network. The mathematical model is presented and subsequently formulated as a mixed integer non‐linear programming (MINLP) problem, which is non‐deterministic polynomial‐time hard. Therefore, a greedy algorithm is designed to approximate the optimal performance. The MINLP problem is then relaxed and an upper bound is developed. Simulation results are presented to compare the performance of the greedy algorithm and the upper bound, which demonstrates the efficacy of the greedy algorithm as well as the tightness of the upper bound. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The advanced technique of multiple beam antennas is recently considered in wireless networks to improve the system throughput by increasing spatial reuse, reducing collisions, and avoiding co‐channel interference. The usage of multiple beam antennas is similar to the concept of Space Division Multiple Access (SDMA), while each beam can be treated as a data channel. Wireless networks can increase the total throughput and decrease the transmission latency if the physical layer of a mobile node can support multirate capability. Multirate wireless networks incurs the anomaly problem, because low data rate hosts may influence the original performance of high data rate hosts. In this work, each node fits out multiple beam antennas with multirate capability, and a node can either simultaneously transmit or receive multiple data on multiple beams. Observe that the transmitting or receiving operation does not happen at the same time. In this paper, we propose a multiple relay‐based medium access control (MAC) protocol to improve the throughput for low data rate hosts. Our MAC protocol exploits multiple relay nodes and helps the source and the destination to create more than one data channel to significantly reduce the transmission latency. Observe that low data rate links with long‐distance transmission latencies are distributed by multiple relay nodes, hence the anomaly problem can be significantly alleviated. In addition, the ACK synchronization problem is solved to avoid the condition that source nodes do not receive ACKs from destination nodes. An adjustment operation is presented to reduce unnecessary relay nodes during the fragment burst period. Finally, simulation results illustrate that our multiple relay‐based MAC protocol can achieve high throughput and low transmission latency. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Xiaoxia  Jianfeng  Yuguang   《Ad hoc Networks》2007,5(6):885-896
Directional antenna offers various benefits for wireless sensor networks, such as increased spatial reuse ratio and reduced energy consumption. In this paper, we formulate the maximum flow problem as an optimization problem in interference-limited wireless sensor networks with switched beam directional antennas. The optimization problem is solvable in the presence of an omniscient controller, but it is NP-hard. Therefore, we seek a distributed algorithm to achieve the maximum flow through jointly routing and scheduling. The maximum flow between given source destination pair is determined forwardly hop by hop and is verified by the proposed feasible condition at downstream nodes. This method works for both single-beam antenna and multi-beam antenna with some variation in the feasibility condition.  相似文献   

7.
1 Introduction Next-generation wireless communication systems (systems beyond 3G) will be required to provide flexible and easy deployment solution to high-speed communications and to support a variety of services utilizing advanced multiple access techni…  相似文献   

8.
Call admission control (CAC) is a key element in the provision of guaranteed quality of service (QoS) in wireless networks. The design of CAC algorithms for mobile cellular networks is especially challenging given the limited and highly variable resources, and the mobility of users encountered in such networks. This article provides a survey of admission control schemes for cellular networks and the research in this area. Our goal is to provide a broad classification and thorough discussion of existing CAC schemes. We classify these schemes based on factors such as deterministic/stochastic guarantees, distributed/local control and adaptivity to traffic conditions. In addition to this, we present some modeling and analysis basics to help in better understanding the performance and efficiency of admission control schemes in cellular networks. We describe several admission control schemes and compare them in terms of performance and complexity. Handoff prioritization is the common characteristic of these schemes. We survey different approaches proposed for achieving handoff prioritization with a focus on reservation schemes. Moreover, optimal and near‐optimal reservation schemes are presented and discussed. Also, we overview other important schemes such as those designed for multi‐service networks and hierarchical systems as well as complete knowledge schemes and those using pricing for CAC. Finally, the paper concludes on the state of current research and points out some of the key issues that need to be addressed in the context of CAC for future cellular networks. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
For wireless mobile multihop relay (MMR) networks, we have chosen orthogonal frequency division multiple access (OFDMA) and time division duplex as a multiple access scheme and a duplex communication technique, respectively. We have also selected nontransparent relay stations (nt‐RSs) as relay nodes to extend the MMR network coverage. Through the nt‐RSs, far‐off subscriber stations (SSs) or hidden SSs can communicate with a base station (BS) that is connected to backhaul networks. In these MMR networks, the way in which a BS and nt‐RSs use OFDMA resources (e.g., OFDMA symbols and subcarriers) and share them might reduce system capacity and network throughput. Therefore, we proposed a new adaptive OFDMA frame structure for both the BS and the nt‐RSs. The proposed scheme is the first approach that incorporates the adaptive technique for wireless MMR networks. Based on the proposed adaptive OFDMA frame structure, an adaptive OFDMA resource allocation for SSs within a BS as well as nt‐RSs was proposed. To derive the maximum OFDMA resource that nt‐RSs can be assigned and to synchronize access zones and relay zones between a superior station and its subordinate nt‐RSs, three properties are introduced: a data relay property, a maximum balance property, and a relay zone limitation property. In addition, we propose max‐min and proportional fairness schemes of the proposed adaptive frame structure. Our numerical analysis and simulations show that the proposed OFDMA allocation scheme performs better than the nonadaptive allocation scheme in terms of network throughput and fairness especially in the asymmetric distribution of subscriber stations between access zones and relay zones in the MMR networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Cooperative game theory can be applied to orthogonal frequency division multiple access (OFDMA) networks for fair resource allocation. In this work, we consider a comprehensive cross‐layer framework including physical and medium access control layer requirements. We apply two cooperative games, nontransferable utility (NTU) game and transferable utility (TU) game, to provide fairness in OFDMA networks. In NTU game, fairness is achieved by defining appropriate objective function, whereas in TU game, fairness is provided by forming the appropriate network structure. For NTU game, we analyze the Nash bargaining solution as a solution of NTU game taking into account channel state information and queue state information. In a TU game, we show that coalition among subcarriers to jointly provide rate requirements leads to better performance in terms of power consumption. The subcarrier's payoff is determined according to the amount of payoff which that subcarrier brings to the coalition by its participation. We show that although NTU and TU games are modeled as rate adaptive and margin adaptive problems, respectively, both solutions provide a fair distribution of resources with minimum fairness index of 0.8. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we propose a resource allocation scheme to minimize transmit power for multicast orthogonal frequency division multiple access systems. The proposed scheme allows users to have different symbol error rate (SER) across subcarriers and guarantees an average bit error rate and transmission rate for all users. We first provide an algorithm to determine the optimal bits and target SER on subcarriers. Because the worst‐case complexity of the optimal algorithm is exponential, we further propose a suboptimal algorithm that separately assigns bit and adjusts SER with a lower complexity. Numerical results show that the proposed algorithm can effectively improve the performance of multicast orthogonal frequency division multiple access systems and that the performance of the suboptimal algorithm is close to that of the optimal one. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper addresses the problem of efficient mapping and allocation of voice over IP (VoIP) traffic with multiple VoIP vocoders in WiMAX systems. We show that by taking advantage of the periodicity of VoIP frames, generated by multiple vocoder types, and by applying semi‐fixed allocations in the existing resource allocation process, the mapping overhead can be reduced substantially. We present a system model that allows the evaluation of the proposed solutions for the problem at hand. Using this model, we show that the problem is NP hard and present a set of observations on the resource allocation process leading to good mapping decisions from the perspective of mapping overhead. We present a new mapping algorithm that implement the decisions and show by extensive simulations that the proposed mapping algorithm can reduce the overhead down to 25% of the overhead experienced in orthogonal frequency division multiple access (OFDMA)‐based systems such as WiMAX and IEEE802.16, while retaining a low computational complexity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
研究了基于OFDMA多址技术的无线多跳中继网络上行链路资源分配问题。首先,在最大发射功率等约束条件下,建立了多小区OFDMA无线多跳中继网络上行链路的资源分配优化模型。将非合作博弈论和定价机制引入后,该优化问题可转化为在每个子信道上独立地进行功率分配。基于非合作博弈的功率分配模型中的纳什均衡点的存在性和唯一性得到了证明,并给出了具体的分布式求解算法。仿真结果表明,所提算法能在大幅减少系统总发射功率的情况下,有效地提升系统吞吐量,达到较高的能效比。  相似文献   

14.
In a relay‐assisted cellular network, the transmission mode (either direct transmission or relaying) and the transmit power of the source and relay nodes affect not only transmission rates of individual links but also the rates of other links sharing the same channel. In this paper, we propose a cross‐layer design that jointly considers the transmission mode/relay node selection (MRS) with power allocation (PA) to optimize the system rate. We first formulate an optimization problem for a cellular system, where the same frequency channel can be reused in different cells. A low complexity heuristic MRS scheme is proposed on the basis of the link and interference conditions of the source and potential relay nodes. Given the transmission mode and relay node (if the relaying mode is chosen) of each link, the transmit power of the source and relay nodes can be solved by geometric programming. This method for MRS and PA can achieve a close‐to‐optimum performance, but implementing the PA requires heavy signalling exchanged among cells. To reduce the signalling overheads, we finally proposed a heuristic and distributed method for MRS and PA inspired by some asymptotic analysis. Numerical results are conducted to demonstrate the rate performance of the proposed methods.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Because of random deployment patterns of femtocells, interference scenarios in a heterogeneous cellular network can be very complicated because of its changing network topology. Especially when each eNodeB occupies a fixed bandwidth, interference management becomes much more difficult. The benefit of dynamic management for local resource optimation is limited. Recently, resource virtualization has been proposed as a dynamic resource management scheme to optimize network performance. In fact, resource virtualization is viewed as a more flexible model, in which mobile network service providers can control physical resources in a global scope. This paper presents a joint resource virtualization and allocation scheme for its applications in heterogeneous macro‐femto‐cellular networks. The proposed scheme involves two major processes. First, it virtualizes physical resources as logical resources. Second, it carries out logical resource allocation optimization globally and aggregates logical and physical resources for resource allocation. The proposed scheme takes into account spectrum reuse and frequency domain interference jointly in order to achieve a high spectral efficiency and provide rate‐on‐demand services to all users. Simulation results demonstrate the effectiveness of the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In the two-tier femtocell network,a central macrocell is underlaid with a large number of shorter range femtocell hotspots,which is preferably in the universal frequency reuse mode.This kind of new network architecture brings about urgent challenges to the schemes of interference management and the radio resource allocation.Motivated by these challenges,three contributions are made in this paper:1) A novel joint subchannel and power allocation problem for orthogonal frequency division multiple access (OFDMA) downlink based femtocells is formulated on the premise ofminimizing radiated interference of every Femto base station.2) The pseudo-handover based scheduling information exchange method is proposed to exchange the co-tier and cross-tier information,and thus avoid the collision interference.3) An iterative scheme of power control and subchannel is proposed to solve the formulated problem in contribution 1),which is an NP-complete problem.Through simulations and comparisons with four other schemes,better performance in reducing interference and improving the spectrum efficiency is achieved by the proposed scheme.  相似文献   

17.
Directional antennas offer many potential advantages for wireless networks such as increased network capacity, extended transmission range and reduced energy consumption. Exploiting these advantages requires new protocols and mechanisms at various communication layers to intelligently control the directional antenna system. With directional antennas, many trivial mechanisms, such as neighbor discovery, become challenging since communicating parties must agree on where and when to point their directional beams to communicate.In this paper, we propose a fully directional neighbor discovery protocol called Sectored-Antenna Neighbor Discovery (SAND) protocol. SAND is designed for sectored-antennas, a low-cost and simple realization of directional antennas, that utilize multiple limited beamwidth antennas. Unlike many proposed directional neighbor discovery protocols, SAND depends neither on omnidirectional antennas nor on time synchronization. SAND performs neighbor discovery in a serialized fashion allowing individual nodes to discover all potential neighbors within a predetermined time. SAND guarantees the discovery of the best sector combination at both ends of a link, resulting in more robust and higher quality links between nodes. Finally, SAND reliably gathers the neighborhood information in a centralized location, if needed, to be used by centralized networking protocols. The effectiveness of SAND has been assessed via simulation studies and real hardware implementation.  相似文献   

18.
Message dissemination in delay tolerant networks (DTN) closely depends on the opportunistic contact between nodes. However, the contact is related to the beaconing rate of nodes. In particular, the node has more chances to contact with others if it has bigger beaconing rate, but this will need more energy. In this paper, we study the optimal beaconing policy in DTN with limited energy. In particular, we focus on the case with multiple destinations. According to whether the destinations forward the message to others, we explore the non‐replicative and replicative cases, respectively. First, we introduce a theoretical model for each case, which can be used to evaluate the performance under different beaconing rates. Then, based on these models, we present the corresponding optimization problems. Through Pontryagin's Maximal Principle, we obtain the optimal beaconing rate and prove that the optimal policies conform to the threshold form in both cases. Simulations show the accuracy of our theoretical models. Extensive numerical results show that the performance of the replicative case is better when the energy is limited. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Efficient radio resource allocation is essential to provide quality of service (QoS) for wireless networks. In this article, a cross-layer resource allocation scheme is presented with the objective of maximizing system throughput, while providing guaranteed QoS for users. With the assumption of a finite queue for arrival packets, the proposed scheme dynamically a/locates radio resources based on user's channel characteristic and QoS metrics derived from a queuing model, which considers a packet arrival process modeled by discrete Markov modulated Poisson process (dMMPP), and a multirate transmission scheme achieved through adaptive modulation. The cross-layer resource allocation scheme operates over two steps. Specifically, the amount of bandwidth allocated to each user is first derived from a queuing analytical model, and then the algorithm finds the best subcarrier assignment for users. Simulation results show that the proposed scheme maximizes the system throughput while guaranteeing QoS for users.  相似文献   

20.
In this paper, we present an analytical model to assess the blocking capacity of multi‐service code division multiple access (CDMA) systems. We include smart antenna systems in our model and show how the capacity of CDMA systems can be improved if smart antennas are employed at the base stations. Applying smart antennas can actually transform CDMA systems from being interference limited to being channel/code limited. To investigate this effect, we extend our model to include the limitation of channelization codes in CDMA‐based universal mobile telecommunication system (UMTS) systems. From the point of view of the call admission control (CAC) in a smart antenna CDMA system, we can either accept the capacity loss due to code limitation, or we can additionally apply space division multiple access (SDMA) techniques to re‐use channelization codes and thus re‐approach the capacity which is obtained if no code limitation is considered. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号