首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of adaptive robust stabilisation is considered for a class of uncertain nonlinear dynamical systems with multiple time-varying delays. It is assumed that the upper bounds of the nonlinear delayed state perturbations are unknown and that the time-varying delays are any non-negative continuous and bounded functions which do not require that their derivatives have to be less than one. In particular, it is only required that the nonlinear uncertainties, which can also include time-varying delays, are bounded in any non-negative nonlinear functions which are not required to be known for the system designer. For such a class of uncertain nonlinear time-delay systems, a new method is presented whereby a class of continuous memoryless adaptive robust state feedback controllers with a rather simpler structure is proposed. It is also shown that the solutions of uncertain nonlinear time-delay systems can be guaranteed to be uniformly exponentially convergent towards a ball which can be as small as desired. Finally, as an application, an uncertain nonlinear time-delay ecosystem with two competing species is given to demonstrate the validity of the results.  相似文献   

2.
This article considers the problem of estimating a partial set of the state vector and/or unknown input vector of linear systems driven by unknown inputs and time-varying delay in the state variables. Three types of reduced-order observers, namely, observers with delays, observers without internal delays and delay-free observers are proposed in this article. Existence conditions and design procedures are presented for the determination of parameters for each case of observers. Numerical examples are presented to illustrate the design procedures.  相似文献   

3.
This paper addresses the problem of adaptive neural control for a class of uncertain pure-feedback nonlinear systems with multiple unknown state time-varying delays and unknown dead-zone. Based on a novel combination of the Razumikhin functional method, the backstepping technique and the neural network parameterization, an adaptive neural control scheme is developed for such systems. All closed-loop signals are shown to be semiglobally uniformly ultimately bounded, and the tracking error remains in a small neighborhood of the origin. Finally, a simulation example is given to demonstrate the effectiveness of the proposed control schemes.  相似文献   

4.
In this paper, the fault-tolerant control (FTC) problem is investigated for a class of multi-input multiple output nonlinear systems with time-varying delays, and an active FTC method is proposed. The controlled system contains unknown nonlinear functions, unknown control gain functions and actuator faults, which integrates time-varying bias and gain faults. Then, fuzzy logic systems are used to approximate the unknown nonlinear functions and unknown control gain functions, fuzzy adaptive observers are used for fault detection and isolation. Further, based on the obtained information, an accommodation method is proposed for compensating the actuator faults. It is shown that all the variables of the closed-loop system are semi-globally uniformly bounded, the tracking error converges to an arbitrary small neighbourhood of the origin. A simulation is given to demonstrate the effectiveness of the proposed approach.  相似文献   

5.
This paper investigates a predefined performance control problem for adaptive tracking of uncertain nonlinear time-delay systems in nonstrict-feedback form. Nonstrict-feedback nonlinearities, time-varying delays and external disturbances are assumed to be unknown. Based on the exponential decaying design functions denoting the preassigned bounds of transient and steady-state tracking errors, some variable separation lemmas are derived to design an approximation-based robust adaptive control scheme in the presence of nonstrict-feedback time-delayed nonlinearities. The proposed control system guarantees that a tracking error remains within a predesigned bound for all t ≥ 0 and converges to a preselected neighbourhood of the origin. Compared with the existing results in the literature, the main contribution of this paper is to provide a solution on the guaranteed performance control in the presence of unknown nonstrict-feedback nonlinearities related to all delayed state variables. Simulation results illustrate the effectiveness of the proposed methodology.  相似文献   

6.
周期时变时滞非线性参数化系统的自适应学习控制   总被引:3,自引:0,他引:3  
陈为胜  王元亮  李俊民 《自动化学报》2008,34(12):1556-1560
针对一阶未知非线性参数化周期时变时滞系统, 设计了一种自适应学习控制方案. 假设未知时变参数, 时变时滞和参考信号的共同周期是已知的, 通过重构系统方程, 将包含时变时滞在内的所有未知时变项合并成为一个周期时变向量, 采用周期自适应律估计该向量. 通过构造一个Lyapunov-Krasovskii型复合能量函数证明了所有信号有界并且跟踪误差收敛. 结果被推广到一类含有混合参数的高阶非线性系统. 通过两个仿真例子说明本文所提出的控制算法的有效性.  相似文献   

7.
In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.  相似文献   

8.
The problem of decentralised adaptive robust stabilisation is considered for a class of uncertain large-scale time-delay interconnected dynamical systems. It is assumed that the upper bounds of the uncertainties, interconnection terms and external disturbances are unknown, and that the time-varying delays are any nonnegative continuous and bounded functions, and do not require that their derivatives have to be less than one. For such a class of uncertain large-scale time-delay interconnected systems, a new method is presented whereby a class of continuous memoryless decentralised local adaptive robust state feedback controllers is proposed. It is also shown that the solutions of uncertain large-scale time-delay interconnected systems can be guaranteed to be uniformly exponentially convergent towards a ball which can be as small as desired. In addition, since the proposed decentralised local adaptive robust state feedback controllers are completely independent of time delays, the results obtained in this article may also be applicable to a class of large-scale interconnected dynamical systems with uncertain time delays. Finally, a numerical example is given to demonstrate the validity of the results.  相似文献   

9.
In the above paper Makoudi and Radouane, 2000 [A robust model reference adaptive control for non-minimum phase systems with unknown or time-varying delay. Automatica, 36, 1057-1065.], a model reference adaptive control (MRAC) algorithm is presented for non-minimum phase systems with unknown or time-varying delays. Unfortunately, this paper contains several mathematical mistakes that render the proofs of the claimed results erroneous. Furthermore, there are no obvious ways to correct these errors, so that the results presented in this paper are questionable.  相似文献   

10.
In this paper, adaptive neural control is proposed for a class of uncertain multi-input multi-output (MIMO) nonlinear state time-varying delay systems in a triangular control structure with unknown nonlinear dead-zones and gain signs. The design is based on the principle of sliding mode control and the use of Nussbaum-type functions in solving the problem of the completely unknown control directions. The unknown time-varying delays are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear functions outside the deadband as an added contribution. By utilizing the integral Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. Simulation results demonstrate the effectiveness of the approach.  相似文献   

11.
In this paper, an adaptive neural network (NN) control approach is proposed for nonlinear pure-feedback systems with time-varying full state constraints. The pure-feedback systems of this paper are assumed to possess nonlinear function uncertainties. By using the mean value theorem, pure-feedback systems can be transformed into strict feedback forms. For the newly generated systems, NNs are employed to approximate unknown items. Based on the adaptive control scheme and backstepping algorithm, an intelligent controller is designed. At the same time, time-varying Barrier Lyapunov functions (BLFs) with error variables are adopted to avoid violating full state constraints in every step of the backstepping design. All closedloop signals are uniformly ultimately bounded and the output tracking error converges to the neighborhood of zero, which can be verified by using the Lyapunov stability theorem. Two simulation examples reveal the performance of the adaptive NN control approach.   相似文献   

12.
线性不确定时滞系统的时滞依赖鲁棒镇定方法研究   总被引:18,自引:0,他引:18  
研究一类同时存在状态和控制滞后的线性不确定时滞系统的鲁棒镇定问题。系统的不确定项参数时为未知但范数有界,其滞后项也时时变的。对此,给出一个使得系统鲁棒稳定的无记忆状态反馈控制律,所得结果与时滞相关,且相应的结果以线性矩阵不等式的形式给出。  相似文献   

13.
In this article, a sliding mode coordinated decentralised state-feedback model reference adaptive control is developed for a class of large-scale uncertain multi-agent systems with time-varying delays in the nonlinear interconnections. The design procedure is based on a combination of the model coordination concept and a sliding mode control methodology. Novel decentralised controller parameterisations that are robust to unknown information exchange delays and to external disturbances with unknown bounds are proposed. Two different controllers are designed: one with discontinuous and one with continuous control action, respectively.  相似文献   

14.
This paper focuses on the problem of direct adaptive fuzzy control for nonlinear strict-feedback systems with time-varying delays. Based on the Razumikhin function approach, a novel adaptive fuzzy controller is designed. The proposed controller guarantees that the system output converges to a small neighborhood of the reference signal and all the signals in the closed-loop system remain bounded. Different from the existing adaptive fuzzy control methodology, the fuzzy logic systems are used to model the desired but unknown control signals rather than the unknown nonlinear functions in the systems. As a result, the proposed adaptive controller has a simpler form and requires fewer adaptation parameters.  相似文献   

15.
This paper describes a neural network state observer-based adaptive saturation compensation control for a class of time-varying delayed nonlinear systems with input constraints. An advantage of the presented study lies in that the state estimation problem for a class of uncertain systems with time-varying state delays and input saturation nonlinearities is handled by using the NNs learning process strategy, novel type Lyapunov-Krasovskii functional and the adaptive memoryless neural network observer. Furthermore, by utilizing the property of the function tan h2(?/?)/?, NNs compensation technique and backstepping method, an adaptive output feedback controller is constructed which not only efficiently avoids the problem of controller singularity and input saturation, but also can achieve the output tracking. And the proposed approach is obtained free of any restrictive assumptions on the delayed states and Lispchitz condition for the unknown nonlinear functions. The semiglobal uniform ultimate boundedness of all signals of the closed-loop systems and the convergence of tracking error to a small neighborhood are all rigorously proven based on the NN-basis function property, Lyapunov method and sliding model theory. Finally, two examples are simulated to confirm the effectiveness and applicability of the proposed approach.  相似文献   

16.
未知时变时滞非线性参数化系统自适应迭代学习控制   总被引:4,自引:3,他引:1  
针对含有未知时变参数和时变时滞的非线性参数化系统,提出了一种新的自适应迭代学习控制方法.该方法将参数分离技术与信号置换思想相结合,可以处理含有时变参数和时滞相关不确定性的非线性系统.设计了一种自适应控制策略,使跟踪误差的平方在一个有限区间上的积分渐近收敛于零.通过构造Lyapunov-Krasovskii型复合能量函数,给出了闭环系统收敛的一个充分条件.给出两个仿真例子验证了控制方法的有效性.  相似文献   

17.
The output tracking control problem is considered for a class of uncertain strict-feedback nonlinear systems with time-varying delays. In the paper, the time-varying delays are assumed to be any non-negative continuous and bounded functions, and it is not necessary for their derivatives to be less than one. It is also assumed that the upper bounds of nonlinear delayed state perturbations and external disturbances are unknown. On the basis of backstepping algorithm, a novel design method is proposed by which some simple adaptive robust output tracking control schemes are synthesised. The proposed design method can avoid the repeated differentiation problem which appears in using the conventional backstepping algorithm, and need not know all the nonlinear upper bound functions of uncertainties, which are repeatedly employed at each step of the backstepping algorithm. In particular, it is not necessary to know any information on the time-varying delays to construct our simple output tracking control schemes. It is also shown that the tracking error can converge uniformly exponentially towards a neighbourhood of the origin. Finally, a numerical example and its simulations are provided to demonstrate the design procedure of the simple method proposed in the paper.  相似文献   

18.
This paper presents an adaptive iterative learning control (AILC) scheme for a class of nonlinear systems with unknown time-varying delays and unknown input dead-zone. A novel nonlinear form of dead-zone nonlinearity is presented. The assumption of identical initial condition for iterative learning control (ILC) is removed by introducing boundary layer function. The uncertainties with time-varying delays are compensated for by using appropriate Lyapunov-Krasovskii functional and Young0s inequality. Radial basis function neural networks are used to model the time-varying uncertainties. The hyperbolic tangent function is employed to avoid the problem of singularity. According to the property of hyperbolic tangent function, the system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapunov-like composite energy function (CEF) in two cases, while keeping all the closedloop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.   相似文献   

19.
研究了一类具有不可控不稳定线性化的非线性系统的自适应控制问题.该类系统的控制方向未知且含有不确定时变非线性参数.应用Nussbaum-type增益技术和adding a power integrator递推设计方法,设计了一种鲁棒自适应状态反馈控制器.所设计的控制器能够保证闭环系统的所有信号全局一致有界,且系统的状态渐近趋于零.除了假设未知参数及不确定性有界外,所设计的控制策略不需要控制系数的任何先验知识.仿真例子验证了算法的有效性.  相似文献   

20.
In this paper,adaptive neural control is proposed for a class of multi-input multi-output(MIMO)nonlinear unknown state time-varying delay systems in block-triangular control structure.Radial basis function(RBF)neural networks (NNs)are utilized to estimate the unknown continuous functions.The unknown time-varying delays are compensated for using integral-type Lyapunov-Krasovskii functionals in the design.The main advantage of our result not only efficiently avoids the controller singularity,but also relaxes the restriction on unknown virtual control coefficients.Boundedness of all the signals in the closed-loop of MIMO nonlinear systems is achieved,while The outputs of the systems are proven to converge to a small neighborhood of the desired trajectories.The feasibility is investigated by two simulation examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号