首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study describes the pattern of connections of the ventral premotor cortex (PMv) with various cortical regions of the ipsilateral hemisphere in adult squirrel monkeys. Particularly, we 1) quantified the proportion of inputs and outputs that the PMv distal forelimb representation shares with other areas in the ipsilateral cortex and 2) defined the pattern of PMv connections with respect to the location of the distal forelimb representation in primary motor cortex (M1), primary somatosensory cortex (S1), and supplementary motor area (SMA). Intracortical microstimulation techniques (ICMS) were used in four experimentally naïve monkeys to identify M1, PMv, and SMA forelimb movement representations. Multiunit recording techniques and myelin staining were used to identify the S1 hand representation. Then, biotinylated dextran amine (BDA; 10,000 MW) was injected in the center of the PMv distal forelimb representation. After tangential sectioning, the distribution of BDA‐labeled cell bodies and terminal boutons was documented. In M1, labeling followed a rostrolateral pattern, largely leaving the caudomedial M1 unlabeled. Quantification of somata and terminals showed that two areas share major connections with PMv: M1 and frontal areas immediately rostral to PMv, designated as frontal rostral area (FR). Connections with this latter region have not been described previously. Moderate connections were found with PMd, SMA, anterior operculum, and posterior operculum/inferior parietal area. Minor connections were found with diverse areas of the precentral and parietal cortex, including S1. No statistical difference between the proportions of inputs and outputs for any location was observed, supporting the reciprocity of PMv intracortical connections. J. Comp. Neurol. 495:374–390, 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

2.
Lateralization of higher brain functions requires that a dominant hemisphere collects relevant information from both sides. The right dorsal premotor cortex (PMd), particularly implicated in visuomotor transformations, was hypothesized to be optimally located to converge visuospatial information from both hemispheres for goal‐directed movement. This was assessed by probabilistic tractography and a novel analysis enabling group comparisons of whole‐brain connectivity distributions of the left and right PMd in standard space (16 human subjects). The resulting dominance of contralateral PMd connections was characterized by right PMd connections with left visual and parietal areas, indeed supporting a dominant role in visuomotor transformations, while the left PMd showed dominant contralateral connections with the frontal lobe. Ipsilateral right PMd connections were also stronger with posterior parietal regions, relative to the left PMd connections, while ipsilateral connections of the left PMd were stronger with, particularly, the anterior cingulate, the ventral premotor and anterior parietal cortex. The pattern of dominant right PMd connections thus points to a specific role in guiding perceptual information into the motor system, while the left PMd connections are consistent with action dominance based on a lead in motor intention and fine precision skills.  相似文献   

3.
Cortical area 1 is a non‐primary somatosensory area in the primate anterior parietal cortex that is critical to tactile discrimination. The corticocortical projections to area 1 in squirrel monkeys were determined by placing multiple injections of anatomical tracers into separate body part representations defined by multiunit microelectrode mapping in area 1. The pattern of labeled cells in the cortex indicated that area 1 has strong intrinsic connections within each body part representation and has inputs from somatotopically matched regions of areas 3b, 3a, 2 and 5. Somatosensory areas in the lateral sulcus, including the second somatosensory area (S2), the parietal ventral area (PV), and the presumptive parietal rostral (PR) and ventral somatosensory (VS) areas, also project to area 1. Topographically organized projections to area 1 also came from the primary motor cortex (M1), the dorsal and ventral premotor areas (PMd and PMv), and the supplementary motor area (SMA). Labeled cells were also found in cingulate motor and sensory areas on the medial wall of the hemisphere. Previous studies revealed a similar pattern of projections to area 1 in Old World macaque monkeys, suggesting a pattern of cortical inputs to area 1 that is common across anthropoid primates.  相似文献   

4.
The ipsilateral connections of motor areas of galagos were determined by injecting tracers into primary motor cortex (M1), dorsal premotor area (PMD), ventral premotor area (PMV), supplementary motor area (SMA), and frontal eye field (FEF). Other injections were placed in frontal cortex and in posterior parietal cortex to define the connections of motor areas further. Intracortical microstimulation was used to identify injection sites and map motor areas in the same cases. The major connections of M1 were with premotor cortex, SMA, cingulate motor cortex, somatosensory areas 3a and 1, and the rostral half of posterior parietal cortex. Less dense connections were with the second (S2) and parietal ventral (PV) somatosensory areas. Injections in PMD labeled neurons across a mediolateral belt of posterior parietal cortex extending from the medial wall to lateral to the intraparietal sulcus. Other inputs came from SMA, M1, PMV, and adjoining frontal cortex. PMV injections labeled neurons across a large zone of posterior parietal cortex, overlapping the region projecting to PMD but centered more laterally. Other connections were with M1, PMD, and frontal cortex and sparsely with somatosensory areas 3a, 1-2, S2, and PV. SMA connections were with medial posterior parietal cortex, cingulate motor cortex, PMD, and PMV. An FEF injection labeled neurons in the intraparietal sulcus. Injections in posterior parietal cortex revealed that the rostral half receives somatosensory inputs, whereas the caudal half receives visual inputs. Thus, posterior parietal cortex links visual and somatosensory areas with motor fields of frontal cortex.  相似文献   

5.
Sixteen healthy right-handed subjects performed a complex finger-tapping task that broadly activates the motor and premotor regions, including primary motor (M1), ventral premotor (PMv), and dorsal premotor (PMd) cortex. This task was performed with the right hand only, left hand only and both hands simultaneously. Behavioral performance and the possibility of mirror movements were controlled through the use of MRI-compatible gloves to monitor finger movements. Using spatially normalized ROIs from the Human Motor Area Template (HMAT), comparisons were made of the spatial extent and location of activation in the left and right motor regions between all three tasks. During unilateral right and left hand tapping, ipsilateral precentral gyrus activation occurred in all subjects, mainly in the PMv and PMd. Ipsilateral M1 activation was less consistent and shifted anteriorly within M1, towards the border of M1 and premotor cortex. Regions of ipsilateral activation were also activated during contralateral and bilateral tasks. Overall, 83%/70%/58% of the ipsilaterally activated voxels in M1/PMd/PMv were also activated during contralateral and bilateral tapping. The mean percent signal change of spatially overlapping activated voxels was similar in PMv and PMd between all three tasks. However, the mean percent signal change of spatially overlapping M1 activation was significantly less during ipsilateral tapping compared with contra- or bilateral tapping. Results suggest that the ipsilateral fMRI activation in unilateral motor tasks may not be inhibitory in nature, but rather may reflect part of a bilateral network involved in the planning and/or execution of tapping in the ipsilateral hand.  相似文献   

6.
The callosal connections of motor and premotor fields in the frontal cortex of galagos were examined by placing multiple tracers into the primary motor area (M1), dorsal premotor area (PMD), ventral premotor area (PMV), supplementary motor area (SMA), and frontal eye field (FEF) following intracortical microstimulation. Retrogradely labeled neurons in the opposite hemisphere were plotted and superimposed onto brain sections stained with myelin and cytochrome oxidase for architectonic analysis. The main callosal connections of M1 and the caudal portion of PMD (PMDc) were with homotopic sites, and the major callosal connections of the rostral portion of PMD (PMDr), SMA, and FEF were with homotopic sites and adjoining cortex in the frontal lobe. In addition, M1 forelimb representation had sparse callosal connections, whereas M1 trunk and face representations, as well as the premotor areas, had dense callosal connections. The sparse interhemispheric connections of the forelimb sector of M1 suggests that the control of each forelimb is largely from the contralateral M1 in galagos, as in other primates.  相似文献   

7.
The human cortex reportedly contains at least five nonprimary motor areas: in the frontolateral convexity, the dorsal and ventral premotor cortex (PMd and PMv), and in the frontomesial wall, the presupplementary and supplementary motor areas (pre-SMA and SMA), and the rostral, dorsal and ventral cingulate areas (CMAr, CMAd, and CMAv). Activation of these regions in neuroimaging studies has been generally associated either with the performance of complex motor tasks or with reorganization occurring with motor recovery in the presence of pathology. Recent evidence from neuroimaging studies suggests that the same areas are activated with well controlled simple movements in healthy subjects providing support to the observation that their contribution may be more quantitative rather than exclusively specific to a certain aspect of motor behaviour. An important consequence of this observation is that activation of multiple nonprimary motor areas during simple motor tasks should not be considered unique to patients with upper or lower motoneuron lesions but rather as a normal physiological process.  相似文献   

8.
We have examined the circuitry connecting the posterior parietal cortex with the frontal lobe of rhesus monkeys. HRP-WGA and tritiated amino acids were injected into subdivisions 7m, 7a, 7b, and 7ip of the posterior parietal cortex, and anterograde and retrograde label was recorded within the frontal motor and association cortices. Our main finding is that each subdivision of parietal cortex is connected with a unique set of frontal areas. Thus, area 7m, on the medial parietal surface, is interconnected with the dorsal premotor cortex and the supplementary motor area, including the supplementary eye field. Within the prefrontal cortex, area 7m's connections are with the rostral sector of the frontal eye field (FEF), the dorsal bank of the principal sulcus, and the anterior bank of the inferior arcuate sulcus (Walker's area 45). In contrast, area 7a, on the posterior parietal convexity, is not linked with premotor regions but is heavily interconnected with the rostral FEF in the anterior bank of the superior arcuate sulcus, the dorsolateral prefrontal convexity, the rostral orbitofrontal cortex, area 45, and the fundus and adjacent cortex of the dorsal and ventral banks of the principal sulcus. Area 7b, in the anterior part of the posterior parietal lobule, is interconnected with still a different set of frontal areas, which include the ventral premotor cortex and supplementary motor area, area 45, and the external part of the ventral bank of the principal sulcus. The prominent connections of area 7ip, in the posterior bank of the intraparietal sulcus, are with the supplementary eye field and restricted portions of the ventral premotor cortex, with a wide area of the FEF that includes both its rostral and caudal sectors, and with area 45. All frontoparietal connections are reciprocal, and although they are most prominent within a hemisphere, notable interhemispheric connections are also present. These findings provide a basis for a parcellation of the classically considered association cortex of the frontal lobe, particularly the cortex of the principal sulcus, into sectors defined by their specific connections with the posterior parietal subdivisions. Moreover, the present findings, together with those of a companion study (Cavada and Goldman-Rakic: J. Comp. Neurol. this issue) have allowed us to establish multiple linkages between frontal areas and specific limbic and sensory cortices through the posterior parietal cortex. The networks thus defined may form part of the neural substrate of parallel distributed processing in the cerebral cortex.  相似文献   

9.
ObjectiveIn macaques, intracortical electrical stimulation of ventral premotor cortex (PMv) can modulate ipsilateral primary motor cortex (M1) excitability at short interstimulus intervals (ISIs).MethodsAdopting the same conditioning-test approach, we used bifocal transcranial magnetic stimulation (TMS) to examine intrahemispheric connectivity between left PMv and M1 in humans. A conditioning stimulus (CS) was applied to PMv at intensities of 80% and 90% of active motor threshold (AMT) and 90% and 110% of resting motor threshold (RMT). A supra-threshold test stimulus (TS) was given 2, 4, 6, 8 and 10 ms after the CS and the amplitude of the motor evoked potential (MEP) was measured to probe corticospinal excitability.ResultsThe CS facilitated corticospinal excitability in ipsilateral M1 when PMv was stimulated with 80% AMT 4 or 6 ms before the TS. At the same ISIs, the CS suppressed corticospinal excitability when the stimulus intensity was increased to 90% RMT. Conditioning effects were site-specific because conditioning the dorsal premotor cortex (PMd) at three different sites produced different effects. Using neuronavigated TMS the PMv site where applied CS produced changes in ipsilateral M1 excitability was located at the border between ventral Brodmann area (BA) 6 and BA 44, the human homologue of monkey’s PMv (area F5).ConclusionWe infer that the corticospinal motor output from M1 to contralateral hand muscles can be facilitated or inhibited by a CS over ipsilateral PMv.SignificanceThe fact that conditioning effects following PMd stimulation differ from those after PMv stimulation supports the concept that inputs from premotor cortices to M1 are functionally segregated.  相似文献   

10.
We combined information from functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) to assess which cortical areas and in which temporal order show macroscopic activation after right median nerve stimulation. Five healthy subjects were studied with the two imaging modalities, which both revealed significant activation in the contra- and ipsilateral primary somatosensory cortex (SI), the contra- and ipsilateral opercular areas, the walls of the contralateral postcentral sulcus (PoCS), and the contralateral supplementary motor area (SMA). In fMRI, two separate foci of activation in the opercular cortex were discerned, one posteriorly in the parietal operculum (PO), and one anteriorly near the insula or frontal operculum (anterior operculum, AO). The activation sites from fMRI were used to constrain the solution of the inverse problem of MEG, which allowed us to construct a model of the temporal sequence of activation of the different sites. According to this model, the mean onset latency for significant activation at the contralateral SI was 20 msec (range, 17-22 msec), followed by activation of PoCS at 23 msec (range, 21-25 msec). The contralateral PO was activated at 26 msec (range, 19-32 msec) and AO at 33 msec (range, 22-51 msec). The contralateral SMA became active at 36 msec (range, 24-48 msec). The ipsilateral SI, PO, and AO became activated at 54-67 msec. We conclude that fMRI provides a useful means to constrain the inverse problem of MEG, allowing the construction of spatiotemporal models of cortical activation, which may have significant implications for the understanding of cortical network functioning.  相似文献   

11.
The ipsilateral cortical connections of primary motor cortex (M1) of owl monkeys were revealed by injecting WGA-HRP and fluorescent tracers into M1 sites identified by intracortical microstimulation. In some of the same animals, the extent and somatotopic organization of M1 was determined by making detailed microstimulation movement maps and relating the results to cortical architectonics. Thus, delineation of M1 was based on a combination of physiological and anatomical characteristics. M1 comprised most, but not all, of the cortex rostral to area 3a where movements were evoked at low levels of current (40 μA or less). Analysis of somatotopic patterns and architectonics placed some of the low-threshold sites in a ventral premotor field (PMV) and the dorsomedially situated supplementary motor area (SMA). Movements were also reliably elicited from a dorsal premotor area (PMD) at higher currents. M1 was characterized by a somatotopic global organization, representing hindlimb, trunk, forelimb, and face movements in a mediolateral sequence, and a mosaic local organization, with a given movement typically represented at several different sites. Architectionically, M1 was characterized by the absence of a granular layer IV and the presence of very large layer V pyramidal cells. However, M1 was not uniform in structure: pyramidal cells were larger caudally than rostrally, a feature we used to distinguish caudal (M1c) and rostral (M1r) subdivisions of the area. M1 resembles Brodmann's area 4, although the rostral subdivision has probably been considered as part of area 6 by some workers. Tracer injections of M1 revealed somatotopically distributed connections with motor areas PMD, PMV, and SMA, as well as in somatosensory areas 3a, 1, 2, and S2. Weaker connections were with area 3b, posterior parietal cortex, the parietal ventral area (PV), and cingulate cortex. M1r and M1c differed connectionally as well as architectonically, M1c being connected primarily with somatosensory areas, while M1r was strongly connected with both non-primary motor cortex and somatosensory cortex. These results indicate that M1 interacts directly with at least three non-primary motor areas and at least six somatosensory areas.  相似文献   

12.
The purpose of this study was to examine the cerebral control of simultaneous movements of the upper and lower limbs. We examined two hypotheses on how the brain coordinates movement: (i) by the involvement of motor representations shared by both limbs; or (ii) by the engagement of specific neural populations. We used positron emission tomography to measure the relative cerebral blood flow in healthy subjects performing isolated cyclic flexion-extension movements of the wrist and ankle (i.e. movements of wrist or ankle alone), and simultaneous movements of the wrist and ankle (a rest condition was also included). The simultaneous movements were performed in the same directions (iso-directional) and in opposite directions (antidirectional). There was no difference in the brain activity between these two patterns of coordination. In several motor-related areas (e.g. the contralateral ventral premotor area, the dorsal premotor area, the supplementary motor area, the parietal operculum and the posterior parietal cortex), the representation of the isolated wrist movement overlapped with the representation of the isolated ankle movement. Importantly, the simultaneous movements activated the same set of motor-related regions that were active during the isolated movements. In the contralateral ventral premotor cortex, dorsal premotor cortex and parietal operculum, there was less activity during the simultaneous movements than for the sum of the activity for the two isolated movements (interaction analysis). Indeed, in the ventral premotor cortex and parietal operculum, the activity was practically identical regardless whether only the wrist, only the ankle, or both the wrist and the ankle were moved. Taken together, these findings suggest that interlimb coordination is mediated by motor representations shared by both limbs, rather than being mediated by specific additional neural populations.  相似文献   

13.
The ipsilateral association connections of the cortex of the dorsal part of the rostral bank of the parieto-occipital sulcus and of the adjoining posterior part of the superior parietal lobule were studied by using different retrograde fluorescent tracers. Fluoro-Ruby, Fast blue and Diamidino yellow were injected into visual area V6A, and dorso-caudal (PMdc, F2) and dorso-rostral (PMdr, F7) premotor cortex, respectively. The parietal area of injection had been previously characterized physiologically in behaving monkeys, through a variety of oculomotor and visuomanual tasks. Area V6A is mainly linked by reciprocal projections to parietal areas 7m, MIP (medial intraparietal) and PEa, and, to a lesser extent, to frontal areas PMdr (rostral dorsal premotor cortex, F7) and PMdc (F2). All these areas project to that part of the dorsocaudal premotor cortex that has a direct access to primary motor cortex. V6A is also connected to area F5 and, to a lesser extent, to 7a, ventral (VIP) and lateral (LIP) intraparietal areas. This pattern of association connections may explain the presence of visually-related and eye-position signals in premotor cortex, as well as the influence of information concerning arm position and movement direction on V6A neural activity. Area V6A emerges as a potential 'early' node of the distributed network underlying visually-guided reaching. In this network, reciprocal association connections probably impose, through re-entrant signalling, a recursive property to the operations leading to the composition of eye and hand motor commands.  相似文献   

14.
The primary motor and premotor areas of the human cerebral cortex.   总被引:3,自引:0,他引:3  
Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.  相似文献   

15.
Lines of evidence indicate that both the ventrolateral prefrontal cortex (vlPFC) (areas 45/12) and dorsal premotor cortex (PMd) (rostral F2 in area 6) are crucially involved in conditional visuomotor behavior, in which it is required to determine an action based on an associated visual object. However, virtually no direct projections appear to exist between the vlPFC and PMd. In the present study, to elucidate possible multisynaptic networks linking the vlPFC to the PMd, we performed a series of neuroanatomical tract‐tracing experiments in macaque monkeys. First, we identified cortical areas that send projection fibers directly to the PMd by injecting Fast Blue into the PMd. Considerable retrograde labeling occurred in the dorsal prefrontal cortex (dPFC) (areas 46d/9/8B/8Ad), dorsomedial motor cortex (dmMC) (F7 and presupplementary motor area), rostral cingulate motor area, and ventral premotor cortex (F5 and area 44), whereas the vlPFC was virtually devoid of neuronal labeling. Second, we injected the rabies virus, a retrograde transneuronal tracer, into the PMd. At 3 days after the rabies injections, second‐order neurons were labeled in the vlPFC (mainly area 45), indicating that the vlPFC disynaptically projects to the PMd. Finally, to determine areas that connect the vlPFC to the PMd indirectly, we carried out an anterograde/retrograde dual‐labeling experiment in single monkeys. By examining the distribution of axon terminals labeled from the vlPFC and cell bodies labeled from the PMd, we found overlapping labels in the dPFC and dmMC. These results indicate that the vlPFC outflow is directed toward the PMd in a multisynaptic fashion through the dPFC and/or dmMC.  相似文献   

16.
Corticocortical projections to the caudal and rostral areas of dorsal premotor cortex (6DC and 6DR, also known as F2 and F7) were studied in the marmoset monkey. Both areas received their main thalamic inputs from the ventral anterior and ventral lateral complexes, and received dense projections from the medial premotor cortex. However, there were marked differences in their connections with other cortical areas. While 6DR received consistent inputs from prefrontal cortex, area 6DC received few such connections. Conversely, 6DC, but not 6DR, received major projections from the primary motor and somatosensory areas. Projections from the anterior cingulate cortex preferentially targeted 6DC, while the posterior cingulate and adjacent medial wall areas preferentially targeted 6DR. Projections from the medial parietal area PE to 6DC were particularly dense, while intraparietal areas (especially the putative homolog of LIP) were more strongly labeled after 6DR injections. Finally, 6DC and 6DR were distinct in terms of inputs from the ventral parietal cortex: projections to 6DR originated preferentially from caudal areas (PG and OPt), while 6DC received input primarily from rostral areas (PF and PFG). Differences in connections suggest that area 6DR includes rostral and caudal subdivisions, with the former also involved in oculomotor control. These results suggest that area 6DC is more directly involved in the preparation and execution of motor acts, while area 6DR integrates sensory and internally driven inputs for the planning of goal‐directed actions. They also provide strong evidence of a homologous organization of the dorsal premotor cortex in New and Old World monkeys. J. Comp. Neurol. 522:3683–3716, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Action observation (AO), observing another individual perform an action, has been implicated in several higher cognitive processes including forming basic motor memories. Previous work has shown that physical practice (PP) results in cortical motor representational changes, referred to as use-dependent plasticity (UDP), and that AO combined with PP potentiates UDP in both healthy adults and stroke patients. In humans, AO results in activation of the ventral premotor cortex (PMv), however, whether this PMv activation has a functional contribution to UDP is not known. Here, we studied the effects disruption of PMv has on UDP when subjects performed PP combined with AO (PP + AO). Subjects participated in two randomized crossover sessions measuring the amount of UDP resulting from PP + AO while receiving disruptive (1 Hz) TMS over the fMRI-activated PMv or over frontal cortex (Sham). We found that, unlike the sham session, disruptive TMS over PMv reduced the beneficial contribution of AO to UDP. To ensure that disruption of PMv was specifically interfering with the contribution of AO and not PP, subjects completed two more control sessions where they performed only PP while receiving disruptive TMS over PMv or frontal cortex. We found that the magnitude of UDP for both control sessions was similar to PP + AO with TMS over PMv. These findings suggest that the fMRI activation found in PMv during AO studies is functionally relevant to task performance, at least for the beneficial effects that AO exerts over motor training.  相似文献   

18.
To gain insight into how cortical fields process somatic inputs and ultimately contribute to complex abilities such as tactile object perception, we examined the pattern of connections of two areas in the lateral sulcus of macaque monkeys: the second somatosensory area (S2), and the parietal ventral area (PV). Neuroanatomical tracers were injected into electrophysiologically and/or architectonically defined locations, and labeled cell bodies were identified in cortex ipsilateral and contralateral to the injection site. Transported tracer was related to architectonically defined boundaries so that the full complement of connections of S2 and PV could be appreciated. Our results indicate that S2 is densely interconnected with the primary somatosensory area (3b), PV, and area 7b of the ipsilateral hemisphere, and with S2, 7b, and 3b in the opposite hemisphere. PV is interconnected with areas 3b and 7b, with the parietal rostroventral area, premotor cortex, posterior parietal cortex, and with the medial auditory belt areas. Contralateral connections were restricted to PV in the opposite hemisphere. These data indicate that S2 and PV have unique and overlapping patterns of connections, and that they comprise part of a network that processes both cutaneous and proprioceptive inputs necessary for tactile discrimination and recognition. Although more data are needed, these patterns of interconnections of cortical fields and thalamic nuclei suggest that the somatosensory system may not be segregated into two separate streams of information processing, as has been hypothesized for the visual system. Rather, some fields may be involved in a variety of functions that require motor and sensory integration.  相似文献   

19.
The ventral premotor cortex (PMv), occupying the ventral aspect of area 6 in the frontal lobe, has been implicated in action planning and execution based on visual signals. Although the PMv has been characterized by cortico‐cortical connections with specific subregions of the parietal and prefrontal cortical areas, a topographical input/output organization between the PMv and the basal ganglia (BG) still remains elusive. In the present study, retrograde transneuronal labelling with the rabies virus was employed to identify the origins of multisynaptic projections from the BG to the PMv. The virus was injected into the forelimb region of the PMv, identified in the ventral aspect of the genu of the arcuate sulcus, in macaque monkeys. The survival time after the virus injection was set to allow either the second‐ or third‐order neuron labelling across two or three synapses. The second‐order neurons were observed in the ventral portion (primary motor territory) and the caudodorsal portion (higher‐order motor territory) of the internal segment of the globus pallidus. Subsequently, the third‐order neurons were distributed in the putamen caudal to the anterior commissure, including both the primary and the higher‐order motor territories, and in the ventral striatum (limbic territory). In addition, they were found in the dorsolateral portion (motor territory) and ventromedial portion (limbic territory) of the subthalamic nucleus, and in the external segment of the globus pallidus including both the limbic and motor territories. These findings indicate that the PMv receives diverse signals from the primary motor, higher‐order motor and limbic territories of the BG.  相似文献   

20.
In order to compare connections of premotor cortical areas of New World monkeys with those of Old World macaque monkeys and prosimian galagos, we placed injections of fluorescent tracers and wheat germ agglutinin-horseradish peroxidase (WGA-HRP) in dorsal (PMD) and ventral (PMV) premotor areas of owl monkeys. Motor areas and injection sites were defined by patterns of movements electrically evoked from the cortex with microelectrodes. Labeled neurons and axon terminals were located in brain sections cut either in the coronal plane or parallel to the surface of flattened cortex, and they related to architectonically and electrophysiologically defined cortical areas. Both the PMV and PMD had connections with the primary motor cortex (M1), the supplementary motor area (SMA), cingulate motor areas, somatosensory areas S2 and PV, and the posterior parietal cortex. Only the PMV had connections with somatosensory areas 3a, 1, 2, PR, and PV. The PMD received inputs from more caudal portions of the cortex of the lateral sulcus and more medial portions of the posterior parietal cortex than the PMV. The PMD and PMV were only weakly interconnected. New World owl monkeys, Old World macaque monkeys, and galagos share a number of PMV and PMD connections, suggesting preservation of a common sensorimotor network from early primates. Comparisons of PMD and PMV connectivity with the cortex of the lateral sulcus and posterior parietal cortex of owl monkeys, galagos, and macaques help identify areas that could be homologous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号