首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
沥青基高比表面活性碳的物理及化学结构   总被引:2,自引:0,他引:2  
  相似文献   

2.
本文对实验室研制的沥青基球形活性碳的一般物化特性,结构特征,吸附性能和强度进行了分析评价,与俄罗斯产品比较,我们的沥青基球形活性碳具有较好的性能,已达到日本同类产品的水平。  相似文献   

3.
高比表面积活性炭的研究与应用   总被引:19,自引:3,他引:16  
本文详细介绍了高比表面积活性炭的制备及活化机理,并对其结构。性能及应用进行了概述。  相似文献   

4.
以马尾藻为原料,采用KOH活化法制备高比表面积活性炭。探索制备马尾藻基活性炭的实验方案和最佳工艺条件。采用正交实验法研究了炭化温度、炭化时间、低温活化温度、低温活化时间和浸渍时间对制得活性炭比表面积和孔容的影响。采用N_2吸附、SEM表征考察了活性炭的孔隙结构和表面形貌。通过正交实验法分析发现,制备马尾藻基高比表面积活性炭的最佳工艺条件为:炭化温度600℃,炭化时间180min,低温活化温度400℃,低温活化时间45min,浸渍时间2h。在16组实验条件下,制备的活性炭比表面积最大为3 122m2/g,所有样品的孔径几乎全部分布在6nm以内。  相似文献   

5.
本文对实验室研制的沥青基球形活性碳的一般物化特性、结构特征、吸附性能和强度进行了分析评价。与俄罗斯产品比较,我们的沥青基球形活性碳具有较好的性能,已达到日本同类产品的水平。  相似文献   

6.
高表面积活性碳的制备   总被引:6,自引:0,他引:6  
本文报道了用石油焦、核桃壳为原料,以氢氧化钾为活化剂制备高表积活性碳的新工艺。研究了主要工艺条件对产品性能的影响。结果表明,最佳活化条件为:KOH与原料比为4∶1,活化温度800~900℃。  相似文献   

7.
微波加热碳酸钾法制备烟杆基高比表面积活性炭   总被引:5,自引:0,他引:5  
以烟杆炭化料为原料,采用微波加热碳酸钾活化法制备了高比表面积活性炭.研究了微波加热时间和碱炭比对活性炭的得率和吸附性能的影响,得到了优化工艺条件,所得活性炭产品的碘吸附值为1834mg/g,亚甲基兰吸附值为517.5mg/g,得率为16.65%.产品的吸附性能超过了双电层电容器专用活性炭(LY/T 1617-2004)标准的要求,同常规加热相比,活化时间缩短了78.26% .同时测定了该活性炭的氮吸附等温线,通过非定域化密度函数理论表征了活性炭的孔结构.该高比表面积活性炭的比表面积为2557m2/g,总孔体积为1.6470ml/g.  相似文献   

8.
高比表面积PAN-ACF的吸附与孔结构解析   总被引:7,自引:0,他引:7  
以KOH为活化剂制备了比表面积大于2000m^2/g的高比表面积PAN基活性炭毡(ACF),以液氦为吸附介质在77.4K测试PAN-ACF吸附等温线,并对其孔结构进行了表征。采用BET法计算比表面积,t-plot法,Horvath-Kawazoe,Dubinin-Radushkevich方程以及密度函数理论(DFT0表征孔结构。研究表明即使比表面积超过3000m^2/g时,PAN-ACF的孔分布仍然很窄,并且含有大量的分子筛型孔,以金子克美等人提出多段吸附机理为依据,采用DR方程对PAN-ACF三段吸附过程所对应的E^0,x进行了计算。结果认为低压段的负偏离在一定程度上是由于吸附较强的微孔与表面官能团共同作用的结果,并非完全由于活化扩散引起,以上分析方法的表征结果具有较好的一致性,为PAN-ACF的吸附性能与孔结构提供了准确的信息。  相似文献   

9.
以聚苯乙烯基大孔吸附树脂球为炭前驱体,经空气预氧化、炭化和活化制备了高比表面积球状活性炭.系统考察了不同氧化和活化条件对氧化球和活化球的物理性能的影响.结果表明:升温速率、氧化温度和氧化时间分别为0.25℃/min、300℃和3h时所得到的氧化球的CCl4吸附值最高,可达970mg/g.此外,当活化温度和活化时间分别为850℃和4h时,球状活性炭的CCl4吸附值最高,为2700mg/g,相应的比表面积为1759m2/g.  相似文献   

10.
我国高比表面积活性炭研究现状与发展对策   总被引:1,自引:0,他引:1  
简述了外高比表面积活性炭发展概况,叙述了我国高比表面积活性炭研究现状,并就我国该材料的发展提出了对策。  相似文献   

11.
活性炭因具有高比表面积和丰富的孔结构而被广泛应用于吸附水处理中的污染物。稻壳具有独特的组成和微观结构, 是制备活性炭的优质碳源。以稻壳为原料, 利用过饱和KOH溶液的预活化和活化双重作用, 在不同温度下制备出超高比表面积活性炭。随着活化温度的升高, 活性炭的比表面积和总孔容逐渐增大。900 ℃下制得的活性炭具有超高比表面积, 达到3600 m2/g, 总孔容为3.164 cm3/g, 明显优于商用活性炭(YP-80, 比表面积为1310 m2/g, 总孔容为0.816 cm3/g)。具有最高比表面积的稻壳活性炭对亚甲基蓝的最大吸附量达到983 mg/g, 几乎是YP-80 (525 mg/g)的两倍。通过吸附动力学拟合, 吸附亚甲基蓝的过程与拟二级动力学模型一致, 表明该过程为化学吸附。  相似文献   

12.
郭晖  张记升  朱天星  代治宇 《材料导报》2016,30(2):24-27, 33
以核桃壳为原料,采用KOH活化法制备活性炭,并将其用作超级电容器电极材料。利用N2吸附和扫描电镜(SEM)表征活性炭的孔结构及表面形貌,系统研究碱炭比(KOH与核桃壳炭化料的质量比)对活性炭孔结构的影响,并采用恒流充放电及循环伏安等测定核桃壳活性炭电极材料在3mol/L KOH电解液中的电化学性能。结果表明,随着碱炭比的增大,活性炭的比表面积、总孔容及中孔比例先逐渐增大后稍有减小。当活化温度为800℃,活化时间为1h,碱炭比为4时,可制备出比表面积为2404m2/g,总孔容为1.344cm3/g,中孔比例为28.6%,孔径分布在0.7~3.0nm之间的高比表面积活性炭。该活性炭用作超级电容器电极材料具有良好的大电流放电特性和优异的循环性能,电流密度由50mA/g提高到5000mA/g时,其比电容由340F/g降低到288F/g,经1000次循环后,比电容保持率为93.4%。  相似文献   

13.
活性碳纤维载银工艺及其表面银颗粒的形态特征   总被引:2,自引:0,他引:2  
王玉林  万怡灶 《材料工程》1998,(9):28-30,34
以自制粘胶基活性碳纤维(ACF)为载体,通过真空浸渍和真空热分解的方法在其表面沉积银,制得了载银活性碳纤维(ACF(Ag)。研究了载银工艺参数对ACF(Ag)的银含量、表面银颗粒大小、分布及形态的影响规律,提出了银颗粒的形核与长大机制;此外,还分析了银颗粒与ACF结合力的影响因素。  相似文献   

14.
以聚酰亚胺(PI)薄膜边角料为前驱体, 采用CO2物理活化法制备高比表面活性炭。研究了活化工艺对PI活性炭孔结构性能的影响及其活化机理, 探讨了活性炭孔结构对其电化学性能的影响。结果表明, PI薄膜可以在相对较低的温度下经CO2活化制备出具有无定型微晶质炭结构、孔隙结构发达的活性炭, 比表面积最高可达2809 m2/g, 总孔容积达1.423 cm3/g; 通过控制CO2活化工艺, 可实现对PI活性炭的孔道尺度与分布的调控。作为超级电容器电极材料, PI活性炭在100 mA/g条件下, 比电容高达237 F/g, 电容保持率为86%。孔径集中于0.7~2 nm, 并存在适量介孔的活性炭具有极佳的电化学性能。  相似文献   

15.
紫茎泽兰同时制备活性炭及高热值燃气实验研究   总被引:2,自引:1,他引:1  
以紫茎泽兰为原料,通过物理活化同时制得活性炭和高热值燃气。考察了活化温度、时间、CO2流量对多孔碳产品吸附性能和得率的影响。通过响应曲面法得到实验优化工艺条件:活化温度980℃,活化时间130min,CO2流量400mL/min,所制得活性炭碘吸附值和得率分别为1002mg/g,15.79%。制得的多孔碳BET比表面积、孔容和平均孔径分别为1076m2/g、0.63mL/g、2.36nm。在此优化条件下得到高热值燃气,燃气热值达11542.32kJ/m3。  相似文献   

16.
对活性炭(AC)进行超声预处理,通过正交实验评价超声功率、超声温度和超声时间三个因素对活性炭材料结构的影响。利用比表面积及孔径分析仪(BET)、场发射扫描电子显微镜(SEM)、碘吸附值测试,表征活性炭材料的微观形貌及吸附性能;利用傅里叶红外光谱法(FTIR),表征活性炭材料表面官能团。结果表明,超声温度50℃,超声功率140W,超声时间30min为最佳预处理条件。各因素对活性炭性能影响大小依次为功率温度时间。在该条件下制备出的活性炭比表面积为1161.6m2/g,与原样相比提高了11.2%;其表面及孔隙变得光滑干净,微孔体积和总孔容变大;活性炭表面官能团种类变化不大,酸性含氧官能团增多。活性炭材料经超声预处理后,性能得到改善,该结果为后期活性炭的应用研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号