首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
电解锰渣是电解锰时产生的酸性滤渣,含有大量有害物质。近年来,随着我国冶金、航空航天、化工等行业的迅猛发展,电解锰的需求日益增加,电解锰渣的无害化处理和资源化利用问题也日益突出。因此,对电解锰行业产生的废渣进行资源化利用成为近年来研究的热点。对锰渣的成分、危害以及资源化利用现状和技术进行了阐述,总结了目前各种方法的不足并提出了一些对电解锰渣的研究及应用前景的想法,为开发电解锰渣的利用价值提供参考。  相似文献   

3.
近年来,电解锰行业发展迅速,其产生的大量锰渣导致的环保问题也日益突出,成为制约电解锰行业发展的瓶颈。随着我国对环境保护的要求越来越严格,电解锰渣的资源化利用研究日益受到公众的重视。本文分析了锰渣的组成及锰渣资源化利用进展情况,总结了锰渣资源化利用不同方向的局限性,指出了锰渣资源化利用应该结合当地实际情况,提高锰渣资源化产品的附加价值等,以期为锰渣资源化利用提供参考。  相似文献   

4.
电解锰渣性质的研究进展及资源化利用展望   总被引:2,自引:0,他引:2  
电解锰渣作为电解锰工业中产生的废渣,规模庞大,且会造成一定的环境污染.本文概述了电解锰渣来源、主要成分、危害、资源化利用的途径,总结了电解锰渣资源化利用的途径和研究方向,提出了目前行业存在的一些不足,并对电解锰行业和电解锰渣的资源化利用问题提出了一些建议与展望,希望为后续对电解锰渣资源化利用的研究工作提供参考.  相似文献   

5.
孟利宏  蒲逸峰 《山东化工》2023,(17):252-255
金属锰被广泛应用于化工、钢铁、有色金属、电子、航天、农业等重要领域,是国民经济重要的工业原料及战略资源。伴随着国内工业的发展,各行各业对金属锰的需求也随之增大,随之带来的是电解锰渣对生态环境的危害问题,利用什么工艺技术处理电解锰渣并将其资源化综合利用,采用何种工程化的处理设备可以低成本对电解锰渣进行处理,成为电解锰渣行业当前发展的最大问题。本文基于当下电解锰渣无害化处理及资源化综合利用的一种方法进行工程化设备的设计及优化,为开发电解锰渣无害化处理及资源化综合利用的工程化研究提供参考。  相似文献   

6.
电解锰渣是电解锰过程中产生的酸性固体滤渣,含有大量有害物质,会引发了严重的水土和环境污染。采用粒度仪、XRF、XRD、DSC-DTG/TG和SEM等,本实验测试了锰渣的理化特性、化学成分、矿物组成、物相转变和组织形貌。结果发现,锰渣颗粒细小,形貌不规则,含水率高。锰渣主要由石英(SiO_2)和石膏(CaSO_4·2H_2O)组成,其化学成分主要为SiO_2、Al_2O_3、CaO、MgO、Fe_2O_3和残留MnO等氧化物。加热时,锰渣脱水和气体排放严重,其中的二水硫酸钙发生物相转变以及分解为SO_3气体,造成二次污染,在1091.7℃时,锰渣则完全熔化成玻璃相。  相似文献   

7.
分析了电石渣的物理性质及化学性质,讨论了电石渣在建材方面的利用途径.  相似文献   

8.
我国电解锰产业的快速发展导致了大量堆放填埋的废锰渣和由此带来的严峻生态环境污染。电解锰渣是电解金属锰后生产的过滤酸渣,含有大量的重金属离子等有害物质。针对锰渣基本性能,总结了锰渣的处理方法和再利用现状,探讨了锰渣再利用的途径和可持续性发展,最后展望了锰渣的资源化再利用前景。  相似文献   

9.
渣场堆存的电解锰渣中含有大量易迁移的锰和氨氮,极易污染周边环境。本文系统研究了不同堆存时间(3个月~10年)电解锰渣的pH、含水率、电导率、金属总量、浸出毒性和化学形态等理化特性,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)以及X射线光电子能谱(XPS)等分析手段,探察电解锰渣在不同堆存时间下的物相组成、微观形貌、表面电子价态等变化规律。研究结果表明,随着堆存时间增加,锰渣的pH、含水率和电导率下降,可溶性Mn2+、Ca2+、Mg2+、Se4+和NH4+-N浓度降低,其中可交换态和碳酸盐结合态的Mn是Mn元素流失的主要形态。同时,堆存10年的电解锰渣仍存在较大的环境污染风险,其中电解锰渣中的Cu、Cr、Cd、Pb、Zn等金属总量远超广西土壤背景值,Se4+的浸出浓度是《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3—2007)中浓度限值的11倍,Mn2+和NH4+-N的浸出浓度是《污水综合排放标准》(GB/T 8978—1996)一级标准限值的102倍和45倍。不同堆存时间的电解锰渣中锰和氨氮主要以(NH4)(Mn,Ca,Mg)PO4·H2O、(NH4)2SO4、MnSO4·H2O、MnCO3、Mn2O3、MnO2等物相存在,含铁物相主要包括FeS2、FeOOH、Fe3O4和Fe2O3等,且电解锰渣中还含有Al4(OH)8(Si4O10)、Al2Mg4(OH)12(CO3)·3H2O和KAl(SO4)2·12H2O等黏土矿物。此外,随着堆存时间的增加,电解锰渣的平均孔径减小,块状、柱状和绒球形的电解锰渣颗粒交错包裹现象增加,同时Fe(OH)3胶体颗粒也逐渐转变成FeOOH、Fe2O3等含铁物相。本研究成果为电解锰渣无害化处理与资源化利用提供了基础理论支持。  相似文献   

10.
随着我国磷矿资源的日益贫化,湿法磷酸副产渣酸量不断增加,但渣酸组分极其复杂,利用难度大。如何实现渣酸高效、增值利用是我国磷化工企业面临的重大难题。介绍了渣酸来源及其主要组成,阐述并分析了渣酸制备磷化工产品、肥料产品及在其他领域中的应用现状;展望了渣酸未来高效、增值化利用应关注的研究与应用方向。  相似文献   

11.
电解锰渣是电解锰行业露天堆存的大宗固体废弃物,在堆存过程中将产生毒性污染物锰离子。为有效利用电解锰渣的同时消除锰离子对环境的危害,以电解锰渣为原料采用微波碱熔活化法制备沸石,并用于吸附锰离子。考察了溶液初始锰离子质量浓度、溶液pH、吸附温度和吸附时间等因素对锰离子吸附效果的影响。结果表明:在溶液初始锰离子质量浓度为500 mg/L、溶液pH为6、吸附时间为2 h、吸附温度为50 ℃条件下,电解锰渣基沸石对锰离子具有较好的吸附能力,最大吸附量高达79.18 mg/g。探究了电解锰渣基沸石对锰离子的吸附行为。结果表明,锰离子在沸石表面的吸附符合准二级动力学模型,Langmuir等温吸附模型比Freundlich模型更适合于描述电解锰渣基沸石去除锰离子的等温吸附过程。电解锰渣基沸石循环使用性能良好,在重金属废水处理方面具有潜在的应用前景。  相似文献   

12.
An environmentally friendly and resource-conserving route to the clean production of electrolytic manganese was developed, in which the electrolytic manganese residue(EMR) was initially calcined for cement buffering;then the generated SO_2-containing flue gas was managed using manganese oxide ore and anolyte(MOOA) desulfurization; at last, the desulfurized slurry was introduced to the electrolytic manganese production(EMP). Results showed that 4.0 wt% coke addition reduced the sulfur of calcined EMR to 0.9%, thereby satisfying the cement-buffer requirement. Pilot-scale desulfurization showed that about 7.5 vol% of high SO_2 containing flue gas can be cleaned to less than 0.1 vol% through a five-stage countercurrent MOOA desulfurization. The desulfurized slurry had 42.44 g·L~(-) Mn~(2+) and 1.92 g·L~(-1) S_2 O_6~(2-), which was suitable for electrowinning after purification, and the purity of manganese product was 99.93%, satisfy the National Standard of China YB/T051-2015.This new integrated technology fulfilled 99.7% of sulfur reutilization from the EMR and 94.1% was effectively used to the EMP. The MOOA desulfurization linked the EMP a closed cycle without any pollutant discharge, which promoted the cleaner production of EMP industry.  相似文献   

13.
选用电解锰渣和水泥熟料作为激发剂,重点研究电解锰渣掺加量对热焖钢渣活性激发的影响,并通过XRD、SEM分析了电解锰渣对水化产物及水泥石微观结构的作用。结果表明:掺加量为12%(质量分数)的电解锰渣对熟料-热焖钢渣体系具有较好的硫酸盐激发效果,加快了钢渣的水化速率,大幅度提高了钢渣胶凝材料的早期强度和后期强度;电解锰渣的掺入对水化产物种类影响不大;与未掺入激发剂组相比,经激发后钢渣胶凝材料浆体中主要以絮状的C—S—H凝胶为主,同时还存在少量的AFt晶体,各水化产物具有良好的匹配,形成致密的结构,从而使整个体系获得较高的强度。  相似文献   

14.
以电解锰加工过程中产生的酸性废渣为原料,以盐酸为浸取剂,对电解锰渣中的钙进行浸取实验研究。结果表明:盐酸浓度为3 mol/L、液固体积质量比为6 mL/g、反应温度为80 ℃、反应时间为60 min的条件下,钙的浸取率为94.2%。酸浸过程的动力学分析表明,锰渣中钙的酸浸反应过程符合收缩核模型,受化学反应控制,其反应的表观活化能Ea为43.96 kJ/mol,反应级数为0.872 5。  相似文献   

15.
电解锰渣已成为阻碍电解锰行业发展的瓶颈,其中锰渣含有的大量石膏是限制其资源化利用的关键。针对锰渣中石膏浸出问题,本文研究了NH4HCO3和NH4Cl用量、浸出初始pH、浸出时间、浸出温度对锰渣中石膏转变规律的影响。研究结果表明,当锰渣与NH4HCO3和NH4Cl之间的质量比为20∶8∶1.5、固液比为1∶5、浸出初始pH为7.5、浸出温度为70℃、浸出时间为120min时,石膏的浸出率达到90.0%;浸出锰渣主要物相含有CaCO3、SiO2、Ca2Mn2(OH)4Si4O11·2H2O、Mg5.0Al6Fe4Si2.5Al1.5O10(OH)8以及KAl3Si3O10(OH)2等,其中浸出锰渣中MnO含量由未浸出前的7.45%提高到14.71%。转变规律表明,NH4HCO3与锰渣中的石膏反应转变成(NH4)2SO4和CaCO3,而NH4Cl作为盐试剂可进一步促进石膏的溶解,从而提高石膏的浸出率。  相似文献   

16.
以电解锰渣和废玻璃为主要原料,采用低温烧结法制备陶瓷砖,探讨了烧结温度、电解锰渣及废玻璃的含量对陶瓷砖基本性能的影响。结果表明,随着烧结温度的升高,陶瓷砖吸水率先减小后增大,体积密度先增大后减小;随着锰渣含量的增加,陶瓷砖的吸水率逐渐增大,体积密度逐渐减小;随着玻璃含量的增加,陶瓷砖的吸水率逐渐减小,体积密度逐渐增大。40 g陶 瓷原料,当锰渣的添加量为32%(质量分数)、玻璃的添加量为10 g、烧结温度为900 ℃时,得到的陶瓷砖的吸水率最低、体积密度最大。  相似文献   

17.
为促进电解锰渣的资源化综合利用,减少锰资源的浪费,以电解锰渣为原料,深入研究粉磨浸取工艺条件对锰元素浸取效率的影响。采用XRD、SEM、XRF以及AAS等手段检测分析样品的物相、成分、锰含量等属性。结果表明:二次粉磨可显著提高锰渣粉体中细粉的含量以及细粉中锰的含量。锰渣粉体细度和表面积的增加,加快了锰渣中锰矿颗粒的浸取反应速度,提高了锰的浸取率。浸取时间和浸取温度均显著影响了锰的浸取率,其中温度的影响更为重要。适宜的浸取反应温度为70~85 ℃。当反应温度为85 ℃、反应时间为1 h时,锰的浸取率可达97.15%。  相似文献   

18.
冉岚  刘少友 《广州化工》2014,(12):14-15
企业加工提炼金属锰等产品时排放的固体废弃物——锰渣,堆放这些锰渣不仅占用大片土地,而且还严重污染周边的环境,危及人类健康,破坏生态平衡,所以对锰渣综合利用是一种必然趋势。目前,锰渣的应用主要有两方面:一是将电解锰渣进行二次提取以得到有用物质;二是建筑陶瓷行业发展迅速,优质的原材料趋于枯竭。为了缓解建筑陶瓷原料的紧缺及解决锰渣对环境造成成的污染,将其添加至水泥中或是制备成陶瓷砖使用。本文主要从以上两个方面对电解锰渣的应用做出了阐述,并对其以后的发展做出展望。  相似文献   

19.
电解锰渣是电解锰生产过程中产生的锰矿石酸浸渣,富含锰、铁等活性组分,理论上可催化氧化SO2实现烟气脱硫,同时脱硫后的电解锰渣可资源化利用,然而目前尚未见电解锰渣矿浆脱硫的研究报道。本文研究了工艺参数对电解锰渣浆液脱除SO2性能的影响,探究了电解锰渣浆液烟气脱硫的过程机制。结果表明:锰渣粒径为200目(<75μm)、锰渣浆液初始浓度5000mg/L、气体流量400mL/min、进口SO2体积分数0.20%、反应温度50℃、反应时间180min的条件下,电解锰渣浆液脱硫率最高可达93.87%。脱硫前后电解锰渣XRD、SEM、XPS表征结果表明,MnO2、MnO、Fe2O3等活性组分参与SO2反应,且浆液中的Mn2+、Fe3+等过渡金属离子液相催化氧化SO2生成H2SO4,实现烟气脱硫。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号