首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work proposes the use of a novel extractant-impregnated resin (EIR) as an adsorbent in trace separation and pre-concentration of U(VI) and Th(IV) ions. The new EIR was prepared by impregnating carminic acid onto Amberlite XAD-16 resin beads. The morphology of new EIR was studied by BET surface area measurements and SEM micrographs. A column packed with CA/XAD-16 was used for selective separation and pre-concentration of the metal ions. Maximum adsorption of Th(IV) and U(VI) ions occurred at pHs of 3.50–5.75 and 3.75–6.50, respectively. The adsorbed metals could be eluted sequentially using 0.55?mol?L?1 HCl for U(VI) and 2.25?mol?L?1 HCl for Th(IV). The dynamic capacity of EIR was found to be 0.832 and 0.814?mmol?g?1 for Th(IV) and U(VI), respectively. The tolerance limit of some foreign ions was also studied. The proposed method showed a good performance in analyzing geological reference materials and a synthetic seawater sample. Furthermore, the above procedure was successfully employed for the analysis of natural water samples.  相似文献   

2.
The synthesis of a new chelating reagent, 1,3-dimethyl-4-acetyl-2-pyrazolin-5-one (DMAP), is described. The reagent is characterized by physical, spectral and thermal methods. The reagent is soluble in water and forms neutral, water-soluble complexes with a number of metal ions, including Zr(IV), Th(IV), and U(VI). The complexed metal ions can be concentrated from dilute aqueous solution by adsorption onto a small column of Amberlite XAD-4 resin. The synthesis and characterization of the uranium (VI) complex of DMAP are described. The complex has the formula UO2 (DMAP)2, with a logarithmic formation constant of 8.64. A procedure is given for concentrating trace levels of U(VI) from solution by complexation with DMAP and sorption on XAD-4 resin. The method shows good recovery and precision for the concentration of trace U(VI) from artificial seawater.  相似文献   

3.
The extraction behavior of U(VI) and Th(IV) with tri-isoamyl phosphate–kerosene (TiAP–KO) from nitric acid medium was investigated in detail using the batch extraction method as a function of aqueous-phase acidity, TiAP concentration and temperature, then the thermodynamic parameters associated with the extraction were derived by the second-law method. It could be noted that the distribution ratios of U(VI) or Th(IV) increased with increasing HNO3 concentration until 6 or 5 M from 0.1 M. However, a good separation factor (D U(VI)/D Th(IV)) of 88.25 was achieved at 6 M HNO3, and the stripping of U(VI) from TiAP–KO with deionized water or diluted nitric acid was easier than that of Th(IV). The probable extracted species were deduced by log D-log c plot at different temperatures as UO2(NO3)2·(TiAP)(1–2) and Th(NO3)4·(TiAP)(2–3), respectively. Additionally, △H, △G and △S for the extraction of U(VI) and Th(IV) revealed that the extraction of U(VI) by TiAP was an exothermic process and was counteracted by entropy change, while the extraction of Th(IV) was an endothermic process and was driven by entropy change.  相似文献   

4.
The triphosphate-crosslinked magnetic chitosan resins (TPP-MCR) with a diameter range of 200–350 nm were synthesized for the adsorption of U(VI) and Th(IV) ions from aqueous solutions. The adsorption experiments were conducted in both mono-component systems with pure actinide solution and bi-component systems with different U/Th mass ratios. The maximum adsorption capacities in mono-component systems determined by Langmuir model were 169.5 and 146.8 mg g?1 for U(VI) and Th(IV), respectively. In bi-component systems, U(VI) and Th(IV) adsorption capacities were reduced significantly, and the combined sorption capacities were substantially lower (almost halved) compared to those obtained by the addition of sorption capacities using mono-component solutions, indicating that U(VI) and Th(IV) compete for the same sorption sites. Adsorption–desorption experiments for five cycles illustrated the feasibility of the repeated use of TPP-MCR for the adsorption of U(VI) and Th(IV) ions.  相似文献   

5.
A new method has been developed using (bis-3,4-dihydroxy benzyl)p-phenylene diamine functionalized to XAD-16 (a polystyrene divinyl benzene copolymer) matrix, to preconcentrate mainly U(VI) and Th(IV) from synthetic and real samples. The developed method is free from matrix interference due to alkali and alkaline metal ions and preconcentrates the actinides with a high degree of selectivity, with consistent trace recoveries. The new chelating resin provides dramatic improvement in metal exchange rate, with half value saturation time (t1/2) of less than 1.6 min. The developed method was superior in its metal loading capacity for U(VI) and Th(IV), with values of 0.666 and 0.664 mmol g−1, respectively. Various physio-chemical properties like effect of solution pH, kinetic studies, resin loading capacity, sample breakthrough volume, matrix effects etc., on metal ion sorption to sorbent phase, were studied using both batch and column method. The new chelatogen was applied to extract U(VI) from near neutral real water samples. Preconcentration and separation of metal ions were possible through pH variation and also by varying the eluant concentration. A high preconcentration factor value of 350 with a lower limit of detection of 20 and 30 ng cm−3 was obtained for U(VI) and Th(IV), respectively. The practical applicability of the developed resin was examined using synthetic and real samples such as sea/well water samples. The method provides low relative standard deviation values of <3.5% for all analytical measurements, reflecting on the reproducibility and accuracy of the developed method. The new resin is quite durable with recycling time >35 cycles, without any major change in its quantitative metal uptake nature.  相似文献   

6.
Fibrous membranes based on poly(ethylene oxide) and poly(l-lactide) fabricated by electrospinning were evaluated for the first time as substrates for the adsorption of tetravalent thorium (Th(IV)) and hexavalent uranium (U(VI)) from aqueous media. The membranes consisted of microfibers with diameters of approximately 2 μm as revealed by scanning electron microscopy. The adsorption of Th(IV) and U(VI) on the membrane was investigated as a function of pH, ionic strength and initial metal concentration under normal atmospheric conditions. The experimental data indicated increased affinity of the membrane for Th(IV) and U(VI), which was pH depended and reaches maximum values (>90 %) for Th(IV) and U(VI) at pH 3 and pH 6.5, respectively. The maximum adsorption capacity (q max) at optimum conditions was evaluated from the Langmuir isotherm and was found to amount 50.08 and 9.3 mmol kg?1 for Th(IV) and U(VI), respectively. In addition, studies on the effect of ionic strength on the adsorption efficiency did not show any significant effect indicating that the adsorption of Th(IV) and U(VI) on the membrane was most probably based on specific interactions and the formation of inner-sphere surface complexes. The significantly higher adsorption efficiency of the membrane for Th(IV) in acidic media (pH ≤ 3) could be utilized for a pH-triggered, selective separation of Th(IV) from U(VI) from aqueous media.  相似文献   

7.
Extraction behavior of U(VI) and Th(IV) from nitric acid medium is investigated using organo-phosphorous extractant, tri(butoxyethyl) phosphate in n-paraffin at room temperature (27 ± 1 °C). The effect of diluents, nitric acid concentration as well as extractant concentration on extraction of U(VI) and Th(IV) are evaluated. Extraction of U(VI) and Th(IV) from nitric acid medium proceeds via solvation mechanism. Slope analysis technique showed the formation of neutral complexes of the type of UO2(NO3)2·2TBEP and Th(NO3)4·3TBEP with U(VI) and Th(IV) respectively in the organic phase. The FTIR data showed shifting of P=O stretching frequency from 1,282 to 1,217 cm−1 indicating the strong complexation of P=O group with UO2 2+ ions in the organic phase. Effect of stripping agents, other metal ions and their separation with respect to U(VI) extraction has also been investigated.  相似文献   

8.
Coriolus versicolor, a wood fungus, was immobilised on Amberlite XAD-4 and used as solid-phase biosorbent for preconcentrations of rare earth elements. La(III), Th(IV), U(IV) and Ce(III) were subjected to solid-phase extraction procedure. We observed that La(III) was selectively preconcentrated, while other ions remained in solution at pH 6.0. 5.0 mL of 1.0 mol L?1 HCl was used to elaute La(III) from column. 250 mg of C. versicolor loaded on 1000 mg of XAD-4 was optimised as solid-phase matrix. Concentrations of ions in solutions were determined by inductively coupled plasma– optical emission spectrometry (ICP-OES). The calibration plot after preconcentration was linear in the range from 1.0 to 50.0 ng mL?1 for La(III). Limit of detection was found as 0.27 ng mL?1 for La(III) by SPE method. Relative standard deviation was found lower than 6.7% for 1.0 ng mL?1 of La(III) solution (n = 10). The sensitivity of ICP-OES was improved by a factor of 46.8. The applicability of the method was validated through the analysis of certified reference samples of tea (NCS ZC-73014) and spinach (NCS ZC-73013).  相似文献   

9.
A new chelating resin (glycidyl methacrylate/divinylbenzene/pentaethylenehexamine (GMA/DVB/PEHA)) for uranium(VI) and thorium(IV) has been developed by functionalizing GMA/DVB with PEHA. The adsorption of U(VI) and Th(IV) ions onto the functionalized GMA/DVB/PEHA were investigated as a function of pH value, contact time, and temperature using batch adsorption technique. The results showed that U(VI) and Th(IV) adsorption onto GMA/DVB/PEHA was strongly dependent on pH. Kinetic studies revealed that the adsorption process achieved equilibrium within 15 and 90 minutes for Th(IV) and U(VI), respectively, and followed a pseudo-second-order rate equation. The isothermal data correlated with the Langmuir model better than the Freundlich model. Thermodynamic data indicated the spontaneous and endothermic nature of the process. The maximum adsorption capacity of U(VI) and Th(IV) were found to be 114 and 78 mg/g, respectively. Quantitative recovery of uranium and thorium were achieved by desorbing the loaded GMA/DVB/PEHA with 0.5 M HNO3   相似文献   

10.
He Q  Chang X  Wu Q  Huang X  Hu Z  Zhai Y 《Analytica chimica acta》2007,605(2):192-197
A new functional monomer N-(o-carboxyphenyl)maleamic acid (CPMA) was synthesized and chosen for the preparation of surface-grafted ion-imprinted polymers (IIPs) specific for thorium(IV). Polymerizable double bond was introduced to silica gel surface by amidation reaction between -NH2 and maleic anhydride. In the ion-imprinting process, thorium(IV) was complexed with the carboxyl groups, then was imprinted in the polymers grafted to the silica gel surface. The imprinted Th(IV) was removed with 3 mol L−1 HCl. The obtained imprinted particles exhibited excellent selectivity and rapid kinetics process for Th(IV). The relatively selective factor (αr) values of Th(IV)/La(III), Th(IV)/Ce(III), Th(IV)/Nd(III), Th(IV)/U(VI), and Th(IV)/Zr(IV) were 85.7, 88.9, 26.6, 64.4, and 433.8, respectively, which were greater than 1. The precision (R.S.D.), the detection limit (3σ), and the quantification limit (10σ) of the method were 1.9%, 0.51 ng mL−1 and 1.19 ng mL−1, respectively. The prepared IIPs as solid-phase extractants were successfully applied for the preconcentration of trace thorium in natural and certified samples prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES) with satisfactory results.  相似文献   

11.
Olive cake as low-cost abundantly available sorbent has been characterized by N2 at 77 K adsorption, porosity analysis, elemental analysis and IR spectra and has been used for preconcentrating of uranium(VI) and thorium(IV) ions prior to their determination spectrophotometrically. The optimum pH values for quantitative sorption of U(VI) and Th(IV) are 4–7 and 3–7, respectively. The enrichment factor for the preconcentration of U(VI) and Th(IV) were found to be 125 and 75 in the given order. The sorption capacity of olive cake is in the range of 2,260–15,000 μg g−1 for Th(IV) and in the range of 1,090–17,000 μg g−1 for U(VI) at pH 3–7. The sorbent exhibits good reusability and the uptake and stripping of the studied ions were fairly rapid. The elution of U(VI) and Th(IV) was performed with 0.3–1 M HCl/1–2 M HNO3 and 0.3–0.8 M HCl/1 M HNO3, respectively. The precision of the method was 1.8 RSD% for U(VI) and 2.5 RSD% for Th(IV) in a concentration of 1.00 μg mL−1 for 10 replicate analysis. The influence of some electrolytes and cations as interferents was discussed. Separation of U(VI) and Th(IV) from other metal ions in synthetic solution was achieved.  相似文献   

12.
A new chelating polymeric sorbent is developed using Merrifield chloromethylated resin anchored with calix[4]arene-o-vanillinsemicarbazone for simultaneous separation and solid phase extractive preconcentration of U(VI) and Th(IV). The “upper-rim” functionalized calix[4]arene-o-vanillinsemicarbazone was covalently linked to Merrifield resin and characterized by FT-IR and elemental analysis. The synthesized chelating polymeric sorbent shows superior binding affinity towards U(VI) and Th(IV) under selective pH conditions. Various physico-chemical parameters that influence the quantitative extraction of metal ions were optimized. The optimum pH range and flow rates for U(VI) and Th(IV) were 6.0-7.0 and 1.0-4.0 ml min−1 and 3.5-4.5 and 1.5-4.0 ml min−1, respectively. The total sorption capacity found for U(VI) and Th(IV) was 48734 and 41175 μg g−1, respectively. Interference studies carried out in the presence of diverse ions and electrolyte species showed quantitative analyte recovery (98-98.5%) with lower limits of detection, 6.14 and 4.29 μg l−1 and high preconcentration factors, 143 and 153 for U(VI) and Th(IV), respectively. The uptake and stripping of these metal ions on the resin were fast, indicating a better accessibility of the metal ions towards the chelating sites. The analytical applicability of the synthesized polymeric sorbent was tested with some synthetic mixtures for the separation of U(VI) and Th(IV) from each other and also from La(III), Cu(II) and Pb(II) by varying the pH and sequential acidic elution. The validity of the proposed method was checked by analyzing these metal ions in natural water samples, monazite sand and standard geological materials.  相似文献   

13.
A new chromatographic extraction method has been developed using Amberlite XAD-16 (AXAD-16) resin chemically modified with (3-hydroxyphosphinoyl-2-oxo-propyl)phosphonic acid dibenzyl ester (POPDE). The chemically modified polymer was characterized by 13C CPMAS and 31P solid-state NMR, Fourier Transform–NIR–FIR–Raman spectroscopy, CHNPS elemental analysis, and thermogravimetric analysis. Extraction studies performed for U(VI), Th(IV), and La(III) showed good distribution ratio (D) values of approximately 103, even under high acidities (1–4 M). Various physiochemical parameters that influence the quantitative metal ion extraction were optimized by static and dynamic methods. Data obtained from kinetic studies revealed that a time duration of 10 min was sufficient to achieve complete metal ion extraction. Maximum metal sorption capacity values under optimum pH conditions were found to be 1.38, 1.33, and 0.75 mmol g–1 for U(VI), Th(IV), and La(III), respectively. Interference studies performed in the presence of concentrated diverse ions and electrolyte species showed quantitative analyte recovery with lower limits of analyte detection being 10 and 20 ng cm–3 for U(VI) and both Th(IV) and La(III), respectively. Sample breakthrough studies performed on the extraction column showed an enrichment factor value of 330 for U(VI) and 270 for Th(IV) and La(III), respectively. Analyte desorption was effective using 15 cm3 of 1 M (NH4)2CO3 with >99.8% analyte recovery. The analytical applicability of the developed resin was tested with synthetic mixtures mimicking nuclear spent fuels, seawater compositions and real water and geological samples. The rsd values of the data obtained were within 5.2%, thereby reflecting the reliability of the developed method.  相似文献   

14.
The extraction behaviour of Th(IV) and U(VI) in extraction chromatography has been investigated on the basis of partition and infrared studies. The stationary phase was purified undiluted TBP supported on Amberlite XAD-4 and the mobile phase was nitric acid. The results have shown that the equilibria for the extraction of Th(IV) and U(VI) by the TBP/XAD-4 resin agreed very closely with those in solvent extraction.  相似文献   

15.
An off-line extraction chromatographic technique has been developed using Amberlite XAD-16 (AXAD-16)-N,N-dihexylcarbamoylmethyl phosphonic acid, as the stationary phase for the extraction of uranium, thorium and lanthanum from nuclear spent fuels as well as from geological and natural water resources. The chemical modifications of the polymeric matrix were monitored using FT-IR spectroscopy, CHNPS elemental analysis and also by thermo gravimetric analysis for water regain measurements. Various physio-chemical parameters influencing the quantitative metal ion extraction by the resin phase were optimized by both static and dynamic methods. The developed resin matrix showed good distribution ratio values under wide concentrations of acidity and pH conditions. Moreover, the sequential separation of analytes is also possible at sample pH 6.5. Also, the polymeric matrix showed superior metal sorption capacities and rapid metal exchange kinetics with a high sample flow rate value of 26 cm3 min−1 for all the three analytes. Thus, reducing the time of analyte extraction from large number of samples anticipated in nuclear waste management programs. The quantitative metal ion recovery of >99.8% was effected with 0.5 M (NH4)2CO3 solution. The method was highly sensitive with lower limits of detections to be 10, 20 and 15 ng cm−3 for U(VI), Th(IV) and La(III), respectively, with a better pre-concentration values of 333 for U(VI) and Th(IV) and 400 for La(III), respectively paving way for its applicability in pre-concentrating trace analytes from large sample volumes. The analytical data were within 4.2% R.S.D. reflecting the reproducibility and reliability of the developed method.  相似文献   

16.
A new polystyrene-divinylbenzene resin containing 1-(2-thiazolylazo)-2-naphthol (TAN) functional group was synthesized and its sorption behavior for 19 metal ions including Zr(IV), Hf(IV) and U(VI) was investigated by batch and column experiments. The chelating resin showed a high sorption affinity for Zr(IV) and Hf(IV) at pH 2. Some parameters affecting the sorption of the metal ions are detailed. The breakthrough and overall capacities were measured under optimized conditions. The overall capacities of Zr(IV) and Hf(IV) that were higher than those of the other metal ions were 0.92 and 0.87 mmol/g, respectively. The elution order of metal ions at pH 4 was evaluated as: Zr(IV)>Hf(IV)>Th(IV)>V(V)>Nb(V)>Cu(II)>U(VI)>Ta(V)>Mo(VI)>Cr(III)>Sn(IV)>W(VI). Quantitative recovery of most metal ions except Zr(IV) was achieved using 2 M HNO3. Desorption and recovery of Zr(IV) was successfully performed with 2 M HClO4 and 2 M HCl.  相似文献   

17.
A very sensitive and selective flow injection on-line determination method of thorium (IV) after preconcentration in a minicolumn having XAD-4 resin impregnated with N-benzoylphenylhydroxylamine is described. Thorium (IV) was selectively adsorbed from aqueous solution of pH 4.5 in a minicolumn at a flow rate of 13.6 mL min?1, eluted with 3.6 mol dm?3 HCl (5.6 mL min?1), mixed with arsenazo-III (0.05% in 3.6 mol dm?3 HCl stabilized with 1% Triton X-100, 5.6 mL min?1) at confluence point and taken to the flow through cell of spectrophotometer where its absorbance was measured at 660 nm. Peak height was used for data analyses. The preconcentration factors obtained were 32 and 162, detection limits of 0.76 and 0.150 ??g L?1, sample throughputs of 40 and 11 h?1 for preconcentration times of 60 and 300 s, respectively. The tolerance levels for Zr(IV) and U(VI) metal ions is increased to 50-folds higher concentration to Th(IV). The proposed method was applied on different spiked tap water, sea water and biological sample and good recovery was obtained. The method was also applied on certified reference material IAEA-SL1 (Lake Sediment) for the determination of thorium and the results were in good agreement with the reported value.  相似文献   

18.
This paper reports a simple and highly selective method for the separation, preconcentration, and determination of trace amounts of thorium and uranium in some complex samples via staircase flotation. The method is based on the initial flotation of the Th(IV)‐arsenazo III complex in the presence of U(VI) from a solution of 5 mol dm?3 HCl, then reduction of U(VI) to U(IV) and repetition of the flotation step. In both steps, the floated complex was dissolved in a 5‐mL portion of methanol and its absorbance was measured at 655 nm, spectrophotometrically. For a 30‐mL portion of the sample, Beer's law was obeyed over the concentration ranges of 3.40 × 10?7to 3.06 × 10?6 mol dm?3 for Th(IV) and3.40 × 10?7 to 3.40 × 10?6 mol dm?3 for U(IV) with the apparent molar absorptivity of 4.20 × 105 dm3 mol?1 cm?1 and 3.59 × 105 dm3 mol?1 cm?1, respectively. The RSDs (n = 7) corresponding to 1.7 × 10?6 mol dm?3 of Th(IV) and U(IV) were obtained as 1.7% and 1.87%. The detection limits (7 blanks) for both the metal ions were found to be 1.7 × 10?7 mol dm?3. The important benefit of the method is that the determinations are free from the interference of almost all cations and anions found in the complex matrixes, such as seawater samples. The proposed method was also applied to reference materials, and the determinations were shown to have good agreement with the certified values.  相似文献   

19.
A new solid phase extraction method for separation and preconcentration of trace amounts of uranium, thorium, and zirconium in water samples is proposed. The procedure is based on the adsorption of U(VI), Th(IV) and Zr(IV) ions on a column of Amberlite XAD-2000 resin loaded with α-benzoin oxime prior to their simultaneous spectrophotometric determination with Arsenazo III using orthogonal signal correction partial least squares method. The enrichment factor for preconcentration of uranium, thorium, and zirconium was found to be 100. The detection limits for U(VI), Th(IV) and Zr(IV) were 0.50, 0.54, and 0.48 μg L−1, respectively. The precision of the method, evaluated as the relative standard deviation obtained by analyzing a series of 10 replicates, was below 4% for all elements. The practical applicability of the developed sorbent was examined using synthetic seawater, natural waters and ceramic samples.  相似文献   

20.
Evaluation of tris-2-ethyl hexyl phosphate (TEHP) for counter-current extraction and separation of U(VI) from a mixture of U(VI)–Th(IV)–Y(III) from nitric acid medium was carried out under wide experimental conditions. Batch extraction studies were carried out to investigate the effect of nitric acid concentration in feed solution, U(VI)/Th(IV) ratio and extractant concentration and the results were compared with established solvent such as tri-n-butyl phosphate (TBP) for separation of U(VI) from nitric acid medium. McCabe–Thiele diagrams for extraction as well as stripping of U(VI) were constructed under simulated conditions. Based on batch experiments, six stage counter-current extraction studies were conducted under various TEHP concentration and it was observed that 0.1 M TEHP/n-paraffin was most suitable for selective recovery of U(VI) from a mixture of U(VI)–Th(IV). An optimized condition, 0.1 M TEHP/n-paraffin, 2 M HNO3 in feed and six number of stages was evaluated for selective extraction and stripping of U(VI) from a solution containing mixture of U(VI)–Th(IV)–Y(III) in nitric acid medium. The U(VI) in strip solution was precipitated using 30 % H2O2 at pH ~3. Average particle size of the final precipitate was found to be ~33 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号