共查询到19条相似文献,搜索用时 84 毫秒
1.
快速准确的产量估算对油茶经营管理和可持续发展具有重要意义。该研究针对油茶快速估产的应用现状,提出一种基于无人机影像自动检测冠层果的方法用于油茶快速估产。首先借助无人机航拍影像,通过随机抽样选取120株油茶树进行无人机近景摄影和人工采摘称量;然后利用Mask RCNN(Mask Region Convolutional Neural Networks) 网络开展基于近景影像的油茶冠层果自动检测与计数;采用线性回归和K最邻近建立冠层果数与单株果数之间的关系,同时结合研究区典型样木株数和平均单果质量,构建基于冠层果自动检测的估产模型。结果表明:1)无人机超低空近景影像结合Mask RCNN网络能够有效检测不同光照条件油茶果,平均F1值达89.91%;2)同传统卫星遥感相比,基于无人机近景摄影的冠层果自动检测在作物产量估测方面显示出明显优势,Mask RCNN网络预测的冠层果数与油茶样木单株果数之间具有良好的一致性,拟合决定系数R2达0.871;3)结合线性回归和K最邻近构建的模型估产精度均较高,拟合决定系数R2和标准均方根误差NRMSE(Normalized Root Mean Square Error)分别在0.892~0.913和28.01%~31.00%之间,表明基于无人机影像自动检测冠层果的油茶快速估产是一种切实可行的方法。研究结果可为油茶快速估产和智能监测提供参考。 相似文献
2.
氮素是冬小麦生长发育必不可少的大量元素,无人机超高分辨率影像丰富的光谱信息和纹理信息为冬小麦植株氮含量精准预测提供了重要的技术途径,但是过多变量造成了信息冗余和模型复杂的问题。针对此问题,该研究提出了一种“相关分析+共线性分析+LASSO(least absolute shrinkage and selection operator)特征筛选”的多层级植株氮含量敏感特征的筛选方法,引入约束系数向量的L1正则化实现特征的稀疏性,将某些特征的系数缩小为0,基于冬小麦关键生育期(拔节期、孕穗期、开花期、灌浆期)无人机影像提取的65个光谱和纹理特征,采BP神经网络(back propagation,BP)、Adaboost、随机森林(random forest,RF)和线性回归(linear regression,LR)4种机器学习算法构建了冬小麦植株氮含量预测模型。结果表明:相关分析筛选出51个通过0.01显著性检验的变量;基于共线性分析,当LASSSO正则化参数λ 取值为0.08时, 17个敏感特征变量被筛选。基于筛选的敏感特征变量,BP、Adaboost、RF和LR 4种算法建立的植株氮含量预测模型均达到了0.01水平差异显著性,且BP、Adaboost和RF 3种预测模型的精度具有高度的一致性,模型R 2均为0.81,RMSE分别为0.36%、0.38%和0.37%,说明该研究提出的多层级特征筛选方法不仅使得模型变得简洁,而且稳健性高,可为智慧农业氮肥精准监测、智慧管理提供技术支撑。 相似文献
3.
基于遥感监测多品种玉米成熟度进而掌握最佳收获时机,对提高其产量和品质至关重要。该研究在玉米成熟阶段获取无人机多光谱影像,同步采集叶片叶绿素含量(chlorophyll content,C )、籽粒含水率(moisture content,M )、乳线占比(proportion of milk line,P )等地面实测数据,以此构建玉米成熟度指数(maize maturity index,MMI),从而定量表征玉米成熟度。通过MMI与植被指数构建回归模型和随机森林模型,验证MMI适用性,并分析无人机遥感对不同品种玉米成熟度的监测精度。结果表明:1)不同品种玉米的叶片叶绿素含量、籽粒含水率、乳线占比的变化速率均存在差异。2)MMI与所选植被指数的相关性均可达到0.01显著水平,其中与归一化植被指数(normalized difference vegetation index,NDVI)、转换叶绿素吸收率(transformed chlorophyll absorbtion ratio index,TCARI)相关性最高,相关系数均为0.87。3)该研究基于不同组合的数据集进行了模型验证,其中随机森林模型对MMI的估测精度最高,测试集决定系数(coefficient of determination,R 2)为0.84,均方根误差(root mean squared error,RMSE)为8.77%,标准均方根误差(normalized root mean squared error,nRMSE)为12.05%。此外,随机森林模型对不同品种MMI的估测精度较好,京九青贮16精度最优,其R 2、 RMSE、nRMSE为0.76、10.67%、15.88%,模型精度证明了可以利用无人机平台对不同品种玉米成熟度进行监测。研究结果可为多光谱无人机实时监测农田多品种玉米成熟度的动态变化提供参考。 相似文献
4.
为了实现小区域尺度上的作物氮素营养状况遥感监测,该研究利用无人机搭载Cubert UHD185成像光谱仪对2016 -2017年关中地区的冬小麦进行遥感监测,通过分析冠层光谱参数与植株氮含量、地上部生物量和氮素营养指数的相关性,筛选出对三者均敏感的光谱参数,结合多元线性逐步回归、偏最小二乘回归和随机森林回归建立抽穗期冬小麦氮素营养指数(Nitrogen Nutrition Index,NNI)估测模型,并与单个光谱参数建立的冬小麦氮素营养指数模型进行比较。结果表明,任意两波段光谱指数对氮素营养指数更为敏感,与氮素营养指数均达到了极显著性相关;基于差值光谱指数和红边归一化指数的单个光谱参数构建的模型具有粗略估算氮素营养指数的能力,相对预测偏差分别为1.53和1.56;基于随机森林回归构建的多变量冬小麦氮素营养指数估算模型具有极好的预测能力,模型决定系数为0.79,均方根误差为0.13,相对预测偏差为2.25,可以用来进行小区域范围内的冬小麦氮素营养指数遥感填图,为冬小麦氮素营养诊断、产量和品质监测及后期田间管理提供科学依据。 相似文献
5.
6.
基于133个滨海湿地土样的全氮(TN)含量和光谱反射率(R)及其对数(lgR)、对数的一阶微分((lgR)'')、倒数(1/R)、倒数的一阶微分((1/R)'')、一阶微分(R'')、平方根(√R)、一阶微分的倒数(1/(R)'')变换,采用偏最小二乘回归(PLSR)、随机森林回归(RFR)和支持向量机回归(SVR)3种算法分别建立土壤TN含量估测模型。结果表明:①土壤TN含量与光谱变换形式相关性由高到低为:(1/R)''> R''> (lgR)''> 1/R > lgR > 1/(R)''> √R > > R,经光谱变换,土壤TN含量与变换光谱的相关性均高于R,其中与(1/R)''的Pearson相关系数最大为0.746。②PLSR和SVR基于R''、(1/R)''、(lgR)''和1/(R)''变换构建的模型、RFR方法构建的所有模型R2均大于0.732,均可用于滨海湿地土壤TN含量的估算。③基于1/(R)''建立的SVR模型预测精度最高,其R2为0.987,RMSE为0.057 g/kg,MAE为0.050 g/kg,是预测滨海湿地土壤TN含量的最优模型,可为准确获取滨海湿地土壤TN含量提供稳定方法。 相似文献
7.
为改进小麦冠层含氮率的高光谱测定模型,以正交试验筛选出小波去噪的最优参数组合(小波类型取haar,分解层数为5,阈值方案选择Fixed form threshold,噪声结构定为Unscaled white noise),并利用去噪后的小麦冠层光谱建立偏最小二乘回归(PLS)模型,对不同预处理方法进行比较分析。发现采用小波去噪结合一阶导数能最有效消除原始光谱的背景信息,此时PLS模型校正集均方根误差(RMSEC)为0.260,预测集均方根误差(RMSEP)为0.288。对经一阶导数结合小波去噪后的光谱用主成分分析(PCA)进行降维,以前6个主成份为输入变量,建立最小二乘支撑向量机回归模型(LS-SVR),其RMSEC与RMSEP分别为0.154与0.259,具有比PLS模型更高的精度。结果表明:以小波去噪结合一阶导数去除小麦冠层反射光谱中的土壤背景信息以提高模型的精度是可行的,且LS-SVR是建模的优选方法。 相似文献
8.
基于多光谱影像反演土壤盐分的建模方法研究 总被引:2,自引:0,他引:2
土壤盐分的定量遥感反演,为快速、准确、全面地监测盐渍化状况提供了可能。本文以黄河三角洲地区垦利县为例,实地调查采集土壤样本,并获取同时相Landsat 8影像,建立土壤盐分遥感反演的BP神经网络、偏最小二乘回归、主成分分析、多元线性回归多种模型,进而进行精度对比分析,评价、优选最佳建模方法,最后,基于最佳模型进行研究区土壤盐分的空间分布反演分析。结果显示:遥感影像的反射率与土壤盐分含量并不是单纯的线性关系,构建的盐分估测模型BP神经网络预测决定系数为0.8467,均方根误差为0.071,明显高于传统线性统计模型,能较好地模拟土壤盐分与光谱数据的关系。该研究既能为盐渍土的治理、利用提供数据支持,又能推动盐渍化区域遥感研究的定量发展。 相似文献
9.
10.
为建立一种能够同时快速检测土壤全磷和全钾的定量估计模型,该文采用近红外漫反射技术对赣南脐橙果园的土壤进行研究,对56个土样风干、过筛,然后进行光谱采集和化学分析。光谱经过Savitzky-Golay平滑后再用一阶微分变换的方法进行预处理,分别应用偏最小二乘回归(partial least square regress PLS)、主成分回归(principal component regression PCR)和最小二乘支持向量机(least squares support vector machine LS-SVM)3种方法,在4 000~7 500 cm-1波数范围内,建立赣南脐橙果园土壤全磷和全钾快速定量检测模型。结果发现在建立土壤全磷模型时,PLS和PCR的预测模型效果均不理想,但LS-SVM建立的模型较为理想, 其预测相关系数(correlation coefficient of prediction RP)为0.884,预测集均方根误差(the root mean square error of prediction RMSEP)为0.341,预测相对分析误差(residual predictive deviation RPD)为2.59。在建立土壤全钾模型时,PLS、PCR和LS-SVM 建立3种模型效果均理想,其中以LS-SVM模型最理想,其预测相关系数(RP)为0.971,预测集均方根误差(RMSEP)为0.714,预测相对分析误差(RPD)为5.12。研究表明,采用LS-SVM建立的土壤全磷和全钾模型对实现土壤全磷和全钾含量快速检测具有可行性。 相似文献
11.
作物产量准确估算在农业生产中具有重要意义。该文利用无人机获取冬小麦挑旗期、开花期和灌浆期数码影像和高光谱数据,并实测产量。首先利用无人机数码影像和高光谱数据分别提取数码影像指数和光谱参数,然后将数码影像指数和光谱参数与冬小麦产量作相关性分析,挑选出相关性较好的9个指数和参数,最后以选取的数码影像指数和光谱参数为建模因子,通过MLR(multiple linear regression,MLR)和RF(random forest,RF)对产量进行估算。结果表明:数码影像指数和光谱参数与实测产量均有很强的相关性。利用数码影像指数和光谱参数通过MLR和RF构建的产量估算模型均在灌浆期表现精度最高,在灌浆期,数码影像指数和光谱参数构建的MLR模型R~2和NRMSE分别为0.71、12.79%,0.77、10.32%。对模型对比分析可知,以光谱参数为因子的MLR模型精度较高,更适合用于估算冬小麦产量。利用无人机遥感数据,通过光谱参数建立的MLR模型能够快速、方便地对作物进行产量预测,并可以根据不同生育期的产量估算模型有效地对作物进行监测。 相似文献
12.
小型无人机(Unmanned Aerial Vehicle,UAV)平台与土壤高光谱技术的有机结合可作为一种快速、准确获取高分辨率土壤有机碳(Soil Organic Carbon,SOC)空间信息的手段,适用于精准农业管理和土地监测,但目前该方面应用不多。该研究选取中国东北黑土和比利时黄土研究区,通过构建与UAV兼容的土壤高光谱数据获取平台,研究其在暗室和野外自然光条件下快速反演SOC含量的能力;进行多源光谱数据修正,探索暗室SOC模型直接应用到野外条件的可行性。结果表明:1)暗室条件下构建的基于UAV兼容光谱数据(FX)的偏最小二乘回归(Partial Least Squares Regression,PLSR)模型能准确预测2个研究区的SOC含量(相对分析误差大于1.6,R2≥0.65);2)野外自然光条件下构建的SOC预测模型精度略有下降(R2=0.58),但SOC含量估算值与实测值的值域相近,说明仍能捕捉SOC含量在其值域的变化;3)利用校准标样对不同光照条件下的FX数据进行修正,将基于实验室光谱数据的PLSR模型应用于野外光谱数据,为实现无需实地采样即可利用无人机载高光谱数据进行SOC快速调查奠定了基础。 相似文献
13.
生物柴油是一种优质清洁柴油,可从各种生物质中提炼,其特有的优势受到越来越广泛的关注。该文应用可见-近红外光谱技术原理对生物柴油的含水率进行了检测。配置含水率分别为0、2.5%、5.0%、7.5%和10.0%的试验样品并获取可见-近红外光谱,进行主成分分析,观察不同含水率生物柴油的聚类性,并采用Random Frog算法进行特征波段的提取,最后采用随机蛙跳算法(Random Frog)挑选出的特征波段作为偏最小二乘回归(partial least squares regression,PLSR)和最小二乘支持向量机(least squares-support vector machine,LS-SVM)模型的输入量,建立生物柴油含水量的预测模型。结果发现:采用Random Frog提取出的8条特征波段(563、560、642、565、562、493、559和779 nm)所建立非线性模型LS-SVM所得到的结果较好,其中Random Frog-LS-SVM的结果中R均大于0.95,校正集均方根误差RMSEC=0.722,预测集均方根误差RMSEP=0.520。结果表明采用Random Frog-LS-SVM模型可以准确的预测生物柴油的含水量,为实际应用提供参考。 相似文献
14.
利用近红外漫反射光谱技术,研究了1300~2100 nm波长范围内无损检测苹果糖度的可行性。采集了每个苹果去皮前、后最大横径上四个点的近红外平均光谱和整个苹果的糖度值。采用主成分回归(PCR)和偏最小二乘法(PLS)对试验数据进行了多元统计分析。结果表明:在1300~2100 nm波长范围内无损检测(即带皮检测)苹果的糖度是可靠的,并且PLS模型的性能更优于PCR模型。本文还对用单测点光谱和多测点平均光谱建立的糖度模型进行了研究,结果表明用单测点光谱预测整个苹果的糖度,其精度明显低于多测点平均光谱。这说明用苹果上一个点的光谱来预测整个苹果的糖度,其精度是不够的。因此,在利用近红外漫反射光谱在线检测苹果糖度时,作者建议采用多个光纤探头来采集多点光谱,然后取其平均值预测。 相似文献
15.
为探寻干旱区滴灌甜菜氮磷钾最佳施用模式,以KWS9147为材料,采用“3414”试验设计,分析氮磷钾配比对甜菜经济产量的影响。结果表明,不同肥料配比对甜菜块根产量、含糖率与产糖量影响显著。施肥因子对甜菜块根产量的单独效应为氮肥>钾肥>磷肥;对含糖率与产糖量的单独效应均为磷肥>氮肥>钾肥。在本试验中,单独施以足量的氮、磷肥有利于提高甜菜产量。然而,当钾肥(K2O)施入量超过46.74 kg·hm-2时产量下降,施入量超过72.79 kg·hm-2时产糖量下降;磷肥(P2O5)施入量超过35.91 kg·hm-2时块根含糖率下降。氮磷肥配施条件下,在施氮肥(N)0~39.1 kg·hm-2、磷肥(P2O5)0~89.5 kg·hm-2范围内,随着施用水平的增加,甜菜产糖量显著增加。氮磷肥、磷钾肥与氮钾肥互作均可以有效提高甜菜块根含糖率。本试验中施肥配比N∶P2O5∶K2O为2.7∶1∶1.1时,可获得最高产糖量(26772.1 kg ·hm-2)。 相似文献
16.
氧化铁是土壤中含铁矿物的主体,是土壤发育和土壤分类最明显和最有用的指标之一。本文以湖南省大围山森林土壤为研究对象,通过实验室化学成分测定和光谱采集,在光谱预处理及组合变换基础上,采用相关性分析筛选土壤氧化铁全量的敏感波段,并分别建立多元逐步回归和偏最小二乘回归反演模型。结果表明:不同土壤光谱曲线趋势基本一致,均形似陡坎,且在420~580 nm波段,土壤氧化铁全量与光谱反射率呈负相关关系;不同的光谱数据变换方式可以提高光谱与氧化铁全量的相关性,Savitzky-Golay(S-G)平滑和去包络线相结合优于其他预处理方法;土壤氧化铁全量的特征波段主要为392、427、529、523、549、559、565、570、994和1040nm,偏最小二乘回归模型比多元逐步回归模型具有更好的稳定性,适合于快速估算红黄壤区森林土壤氧化铁全量。 相似文献
17.
利用高光谱数据进行作物生长状况监测具有无损和高效的特点,是现代精准农业发展的必要手段。该研究以连续3 a(2018-2020年)不同水氮供应下夏玉米营养生长期采集的212份植物样品(地上部生物量和叶面积指数)和高光谱实测数据为数据源,分别采用偏最小二乘回归(Partial Least Squares Regression,PLS)、极限学习机(Extreme Learning Machine,ELM)、随机森林(Random Forest,RF)和基于PLS叠加策略的叠加极限学习机算法(Stacked Ensemble Extreme Learning Machine based on the PLS,SEPLS_ELM)构建了夏玉米营养生长期地上部生物量和叶面积指数估算模型。结果表明:基于PLS和ELM构建的夏玉米地上部生物量和叶面积指数估算模型的精度均较低,前者验证集R2低于0.85、均方根误差高于550 kg/hm2,后者R2低于0.90、均方根误差高于0.40 cm2/cm2。相比之下,基于RF和SEPLS_ELM构建的夏玉米营养生长期地上部生物量和叶面积指数估算模型均有着较高的估算精度,SEPLS_ELM模型表现尤为突出,其地上部生物量和叶面积指数估算模型验证集的R2分别为0.955和0.969,均方根误差分别为307.3 kg/hm2和0.24 cm2/cm2,表明叠加集成模型能够充分利用高光谱数据并提高作物地上部生物量和叶面积指数估算精度。 相似文献
18.
The applicability, transferability, and scalability of visible/near-infrared (VNIR)-derived soil total carbon (TC) models are still poorly understood. The objectives of this study were to: i) compare models of three multivariate statistical methods, partial least squares regression (PLSR), support vector machine (SVM), and random forest methods, to predict soil logarithm-transformed TC (logTC) using five fields (local scale) and a pooled (regional-scale) VNIR spectral dataset (a total of 560 TC spectral datasets), ii) assess the model transferability among fields, and iii) evaluate their up- and downscaling behaviors in Florida, USA. The transferability and up- and downscaling of the models were limited by the following factors: i) the spectral data domain, ii) soil attribute domain, iii) methods that describe the internal model structure of VNIR-TC relationships, and iv) environmental domain space of attributes that control soil carbon dynamics. All soil logTC models showed excellent performance based on all three methods with R2 > 0.86, bias < 0.01%, root mean squared error (RMSE) = 0.09%, residual predication deviation (RPD) > 2.70%, and ratio of prediction error to interquartile range (RPIQ) > 4.54. The PLSR method performed substantially better than the SVM method to scale and transfer the TC models. This could be attributed to the tendency of SVM to overfit models, while the asset of the PLSR method was its robustness when the models were validated with independent datasets, transferred, and/or scaled. The upscaled soil TC models performed somewhat better in terms of model fit (R2), RPD, and RPIQ, whereas the downscaled models showed less bias and smaller RMSE based on PLSR. We found no universal trend indicating which of the four limiting factors mentioned above had the most impact that constrained the transferability and scalability of the models. Given that several factors can impinge on the empirically derived soil spectral prediction models, as demonstrated by this study, more focus on their applicability and scalability is needed. 相似文献