首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
为研究舟山市大气细颗粒物(PM_(2.5))的主要污染来源,在2016年4月—2017年1月期间利用3个国控点对舟山市PM_(2.5)开展手工监测,并对其主要污染源进行样品采集,基于420个环境样品和13类源样品的化学组分分析,应用CMB-二重源解析技术,对舟山市颗粒物受体成分谱、本地化源成分谱的组分特征和颗粒物的污染来源进行分析。结果表明:普陀点的PM_(2.5)浓度均值低于位于主城区的檀枫点和临城点,3个站点的颗粒物浓度分别为(36. 46±19. 40),(40. 92±20. 68),(40. 03±21. 55)μg/m~3。PM_(2.5)受体中以NO_3~-、SO_4~(2-)、NH_4~+等二次组分含量最高,二次无机盐和移动源是监测期间舟山市大气PM_(2.5)的主要来源,解析结果具有显著的海岛型城市特征。以船舶源为代表的移动源既是颗粒物的重要一次源,又是二次无机盐生成的主要前体物贡献来源之一,故加强移动源的排放管理对于舟山市的颗粒物污染防治具有重要意义。  相似文献   

2.
为探究浙江省城市大气颗粒物的组分污染特征,基于2019年10月1日至2020年9月30日浙江省内11个点位4个区域的手工采样监测数据,分析了浙江省PM2.5组分不同区域不同季节的污染特征.结果表明,采样期内浙江省各地区ρ(PM2.5)平均值范围为34.3~46.4μg·m-3,其中浙西和浙北内陆地区PM2.5浓度相对较高,分别高出均值15.1%和13.2%,浙东和浙南沿海地区PM2.5浓度相对较低,分别低于均值8.4%和14.9%.季节性特征呈现秋季和冬季较高,夏季最低,空间分布来看,浙南地区的PM2.5浓度春季、秋季和冬季季节变化不明显,浙西地区为:秋季>冬季>春季>夏季,浙北和浙东地区均呈现冬季>秋季>春季>夏季的季节变化特征.内陆地区采样期内,风景名胜区、行政区、居民区和商业交通居民混合区的ρ(PM2.5)分别为:(40.2±10.2)、(46.3±9.6)、(50.1±10.6)和(46.7...  相似文献   

3.
为了明确泰安市环境受体PM_(2.5)的污染特征和主要来源,该研究于2015年春、冬季在泰安市区采集了环境受体中PM_(2.5)样品,分析了PM_(2.5)及其化学组分特征,建立了源化学成分谱,基于化学质量平衡(CMB)模型对泰安市环境受体PM_(2.5)进行了来源解析,利用后轨迹分析了PM_(2.5)的区域传输路径。结果表明:PM_(2.5)及其化学组分与污染源贡献都具有明显的季节特征。春季,机动车尘是PM_(2.5)的首要贡献源类,分担率为19.11%;其次为二次硫酸盐、扬尘和煤烟尘,分担率分别为18.07%、16.08%、10.53%。冬季,煤烟尘为首要的污染源类,分担率为16.32%;机动车源和城市扬尘对PM_(2.5)的分担率比春季低,分别为11.99%和13.42%。后轨迹分析表明,春季PM_(2.5)可能受来自内蒙古等地的土壤风沙尘的长距离运输影响;冬天可能受来自蒙古、河北、山东周边等地燃煤源的长距离运输的影响。  相似文献   

4.
汾渭平原是我国空气污染最严重的区域之一,2018年被列为重点区域. 本研究针对汾渭平原11城市开展PM2.5化学组分连续观测,分析PM2.5浓度和主要化学组分的时空分布规律,并利用PMF模型解析PM2.5污染来源. 结果表明:①2018—2019年秋冬季汾渭平原11城市ρ(PM2.5)平均值为(101.4±65.4)μg/m3,是京津冀及周边地区“2+26”城市的1.1倍. 临汾市ρ(PM2.5)最高(216.8 μg/m3),是汾渭平原的2.1倍. ②2018—2019年秋冬季汾渭平原PM2.5的主要化学组分是有机物、硝酸根离子、地壳物质和硫酸根离子,其中地壳物质占比是京津冀及周边地区的1.6倍. ③受污染物排放、气象条件以及地理位置的影响,汾渭平原PM2.5中有机物、硝酸根离子、地壳物质、硫酸根离子、铵根离子和氯离子的空间分布具有明显的差异性. ④随着污染的加重,硝酸根离子、硫酸根离子和氯离子在PM2.5中的占比均逐渐增加,地壳物质、元素碳、微量元素等与一次排放相关的组分占比随污染加重逐渐减少,表明污染期间燃煤源管控仍需进一步加严,而对扬尘源和机动车等污染源的管控起到了良好的效果. ⑤重污染过程期间,相对湿度增加、风速减小是影响PM2.5浓度上升的客观因素,二次组分以及与燃煤源和生物质燃烧源有关的化学组分的增长是影响PM2.5浓度上升的重要原因,二次源和燃烧源是PM2.5的主要来源. 研究显示,汾渭平原秋冬季PM2.5污染较重,尤其需要关注燃烧源的管控.   相似文献   

5.
郑州市PM2.5化学组分的季节变化特征及来源解析   总被引:1,自引:0,他引:1  
张剑飞  姜楠  段时光  孙有昌  郝祺  张瑞芹 《环境科学》2020,41(11):4813-4824
为了解析郑州市PM2.5的污染特征和来源,同时为了研究不同季节以及市区和市郊之间的差异,本研究于2018年四季在郑州市环境保护监测中心站(市区)和郑州大学(市郊)点位共计采集环境PM2.5有效样品1 284个.通过离子色谱仪、碳分析仪和X射线荧光光谱仪分别测试得到9种无机水溶性离子、两种碳组分和27种元素浓度,分析了郑州市城郊PM2.5中化学组分的季节变化特征,使用富集因子法、地累积指数法、化学质量平衡模型、后向轨迹法和潜在源贡献因子法,研究了郑州市城郊不同季节PM2.5的来源差异.结果表明,市区和市郊点位年平均PM2.5浓度达到(59.7±24.0)μg·m-3和(74.7±13.5)μg·m-3,郊区点位(除冬季外)季节平均浓度均高于市区点位,季节均值呈现冬季>秋季>春季>夏季的变化.市郊春季受地壳物质的影响较大,夏秋两季全部组分浓度均高于市区;冬季市区受燃煤源和机动车源影响更大.Cu、 As、 Zn、 Pb和S...  相似文献   

6.
近年来汾渭平原冬季雾-霾事件频发,节假日期间尤为明显,除燃煤和工业排放外,区域的地形和气候特征也是导致雾-霾的主要因素.2019年2月春节期间对汾渭平原临汾站点的空气质量进行观测.运用电感耦合等离子体质谱仪(ICP-MS)对PM2.5中的13种元素(Li、Be、Ti、Rb、Sc、Y、La、Ce、Zr、V、Tl、U和Sn)进行分析测定,并结合站点的气象数据,运用聚类分析和后向轨迹等方法,分析了污染物的时空分布与潜在源区贡献.结果表明,观测期间SO2的平均浓度为58.39μg·m-3,超过了国家环境空气质量标准(GB 3095-2012) 24 h一级平均质量浓度限值(50μg·m-3),O3、NO2和CO的均值浓度分别为52.15μg·m-3、29.02μg·m-3和2.29 mg·m-3.聚类分析结果表明,La、Ce、Ti、V、Li、Be、Rb、Y、U、Sc和Zr主要受地壳土壤源影响.气态污染物的空间分析结果表明...  相似文献   

7.

为研究伊犁河谷城市群不同城市不同粒径大气颗粒物的组分特征和来源,于2021年7月19—29日,在伊犁河谷城市群的伊宁市、伊宁县、察布查尔锡伯自治县(简称察县)和霍城县布设6个采样点采集大气PM2.5和PM10样品,对样品中的化学组分(无机元素、水溶性离子和碳组分)进行分析,并使用化学质量平衡模型对其来源进行解析。结果表明:研究期间伊犁河谷核心区城市群PM2.5和PM10浓度均处于较低水平,分别为(22.81±2.79)和(58.81±6.95)μg/m3;从空间分布来看,伊宁市和伊宁县的颗粒物浓度相对较高,霍城县和察县的浓度相对较低。化学组分质量重构结果表明,地壳元素是研究期间PM2.5和PM10的主要组分,占比分别为39.8%和54.1%;其次为有机物,占比分别为33.2%和19.8%;二次无机离子在PM2.5和PM10中也有一定占比,分别为20.2%和10.7%。源解析结果表明,PM2.5主要来自二次颗粒物(29.1%)和扬尘源(28.3%)的贡献,工业源(16.1%)、机动车(10.5%)、燃煤源(9.3%)也均有一定贡献;PM10中则以扬尘源的贡献最大(42.3%),远高于二次颗粒物(14.7%)、工业源(14.1%)、机动车(8.4%)和燃煤源(7.3%)。

  相似文献   

8.
重庆主城区大气PM10及PM2.5来源解析   总被引:8,自引:0,他引:8       下载免费PDF全文
为探讨重庆主城区4个季节大气PM10和PM2.5的主要来源,于2012年2—12月在重庆主城区的工业区、文教区和居住区5个环境监测点同步采集PM10及PM2.5样品,分析了无机元素、水溶性离子、有机碳和元素碳含量及其分布特征. 采集了重庆主城区土壤尘、建筑水泥尘、扬尘、移动源(包括机动车、施工机械及船舶)、工业源(包括固定燃烧源及工业工艺过程源)、生物质燃烧源及餐饮源等7类污染源,建立了重庆市本地化的污染源成分谱库. 利用CMB(化学质量平衡)受体模型及二重源解析技术分析了PM10及PM2.5的来源. 结果表明:重庆主城区大气中ρ(PM10)及ρ(PM2.5)的年均值分别为153.2和113.1 μg/m3,超过GB 3095—2012《环境空气质量标准》二级标准限值2倍以上. 大气PM10的主要来源为扬尘、二次粒子和移动源(贡献率分别为23.9%、23.5%和23.4%),大气PM2.5主要来源于二次粒子和移动源(贡献率分别为30.1%和27.9%).PM10和PM2.5的主要源类贡献率差别不大,表明研究区域内大气颗粒物污染控制应采取多源控制原则. 大气PM10来源的季节性变化特征表现为春季和秋季主要以扬尘为主、夏季和冬季主要以二次粒子为主.   相似文献   

9.
采集并分析了武汉市机动车尾气源PM2.5样品,并于2019年10月18~27日采集了武汉市不同路边微环境(市区路边、环线路边、环境背景点)PM2.5样品并分析其化学组分特征,利用化学质量平衡模型(CMB)解析评估了机动车尾气对城市不同路边微环境PM2.5的贡献.结果表明,机动车尾气成分谱以OC和EC为主,汽油车OC质量分数约为柴油车的1.14倍,柴油车EC质量分数是汽油车的1.08倍.路边碳组分主要来源于机动车尾气,其中OC浓度在市区路边最高,EC浓度在环线路边最高;市区路边NO3-和NH4+浓度较高,与二次转化有关;环线路边Fe、Si、Al质量浓度高于市区路边.CMB来源解析结果显示,机动车尾气源是环线路边、市区路边微环境的主要来源,分担率为35.20%和38.89%,是环境背景点的2倍左右.不同路边微环境污染源贡献差异明显,与环线路边相比,市区路边机动车尾气源与二次来源均相对较高,而扬尘源贡献低于环线路边.  相似文献   

10.
北京市大气细颗粒物PM2.5的来源研究   总被引:53,自引:4,他引:53  
2000-2001年在北京联合大学化学学院、中国预防科学研究院和中国环境科学研究院3个采样点采集北京市PM2.5样品,并对其中无机元素、阴阳离子、有机碳(OC)、元素碳(EC)和有机物进行测定.以多环芳烃和部分无机组分为示踪物,利用CMB受体模型对PM2.5来源进行解析.结果表明,北京市PM2.5的主要来源为燃煤、扬尘、机动车排放、建筑尘、生物质燃烧、二次硫酸盐和硝酸盐及有机物.污染源贡献率随地域变化不大,燃煤、扬尘、生物质燃烧、二次硫酸盐和硝酸盐随季节变化比较明显.与1989-1990年解析结果相比,10年间PM2.5来源发生了一定变化.   相似文献   

11.
2014年3月、4月和7月分别采集了泉州市5个采样点共49个PM_(2.5)样品,采用电感耦合等离子体质谱(ICP-MS)测定样品镧系元素(Loid)及其他微量金属元素浓度水平.分析了PM_(2.5)镧系元素组成特征和配分模式,利用La-Ce-V三元图和化学质量平衡(CMB)受体模型解析了泉州市大气PM_(2.5)污染来源.结果表明:(1)泉州市大气PM_(2.5)总镧系元素(Σ Loid)浓度为2.490~5.708 ng·m~(-3)(含量65.682~126.529μg·g~(-1)),轻重镧系元素比值(L/H)为12.086~14.319;(2)PM_(2.5)镧系元素配分模式与福建土壤相似,PM_(2.5)中Ce元素表现为正异常,而Eu元素表现为负异常;(3)城市扬尘、燃煤尘、汽车尾气尘和垃圾焚烧飞灰是泉州市大气PM_(2.5)的主要来源,贡献率分别为18.9%、10.9%、30.6%和30.2%.  相似文献   

12.
成都市冬季大气颗粒物组成特征及来源变化趋势   总被引:7,自引:0,他引:7  
年冬季分别在成都市8个环境受体采样点采集PM10、PM2.5样品,同时采集颗粒物源类样品,分析上述样品质量浓度及多种无机元素、水溶性离子和碳组分的含量,以对这3 a冬季大气颗粒物浓度、特征组分、来源及变化趋势进行分析. 使用CMB-iteration模型对成都市中心城区的PM10、PM2.5进行来源解析. 结果表明: 成都市冬季ρ(PM10)在工业区最高,PM2.5污染呈现区域性特征;冬季PM10的主要来源有扬尘、二次硫酸盐、煤烟尘、二次硝酸盐和机动车尾气尘,上述5类源在2010─2012年的分担率分别为24%~29%、17%~22%、13%~16%、6%~12%、6%~11%;对PM2.5有重要贡献的源类有二次硫酸盐、扬尘、煤烟尘、二次硝酸盐和机动车尾气尘,这5类源在2010─2012年的分担率范围分别为25%~27%、19%~22%、12%~15%、11%~13%、8%~11%. 二次粒子、扬尘等是成都市大气颗粒物的主要污染源,其中扬尘、建筑水泥尘等以粗粒子为主的源类浓度贡献呈逐年下降趋势,而二次粒子等以细粒子为主的源类浓度贡献则逐年上升,成都市冬季大气细颗粒物污染加重.   相似文献   

13.
海口市PM_(2.5)和PM_(10)来源解析   总被引:1,自引:1,他引:1       下载免费PDF全文
以海口市为例,研究了我国典型热带沿海城市——海口市环境空气颗粒物的污染特征和主要来源.2012年春季和冬季在海口市区4个采样点同步采集了环境空气中PM10和PM2.5样品,同时采集了多种颗粒物源样品,并使用多种仪器分析方法分析了源与受体样品的化学组成,建立了源化学成分谱.使用CMB(化学质量平衡)模型对海口市大气颗粒物进行源解析.结果表明:污染源贡献具有明显的季节特点,并存在一定的空间变化.冬季城市扬尘、机动车尾气尘、二次硫酸盐和煤烟尘是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为23.6%、16.7%,17.5%、29.8%,13.3%、15.7%和13.0%、15.3%;春季机动车尾气尘、城市扬尘、建筑水泥尘和二次硫酸盐是海口市PM10和PM2.5中贡献较大的源,在PM10和PM2.5中贡献率分别为27.5%、35.0%,20.2%、14.9%,12.8%、6.0%和9.5%、10.5%.冬季较重的颗粒物污染可能来自于华南内陆地区的区域输送,特别是,本地排放极少的煤烟尘和二次硫酸盐受区域输送的影响更为显著.  相似文献   

14.
为研究张掖市城区大气细颗粒物(PM2.5)的污染特征和来源,于2020年9月至2021年7月在张掖市城区的河西学院和湿地博物馆2个采样点进行了PM2.5样品采集,对PM2.5浓度、化学组成(水溶性无机离子、碳质组分和元素)和来源进行分析.结果表明,河西学院和湿地博物馆两个采样点的年均ρ(PM2.5)分别为(73.7±31.8)μg·m-3和(68.1±33.3)μg·m-3,季节浓度均值均呈现春季>冬季>秋季>夏季的变化.河西学院采样点的二次水溶性无机离子(SO42-、NO3-和NH4+)年均值高于湿地博物馆.河西学院采样点的ρ(OC)和ρ(EC)分别为(9.6±5.7)μg·m-3和(2.9±1.6)μg·m-3,湿地博物馆采样点的年均ρ(OC)和ρ(EC)分别为(9.2±5.8)μg·m-3和(2.5±1.3)μg·m-3,河西学院的含碳组分在各季节均高于湿地博物馆.河西学院和湿地博物馆两个采样点的年均二次有机碳(SOC)在OC中的质量分数分别为49.4%和43.7%,表明张掖市存在较为严重的二次污染.河西学院和湿地博物馆两个采样点的元素浓度年均值分别为(6.0±3.5)μg·m-3和(5.8±3.9)μg·m-3,受到人为源的影响,Zn、Ca、Al和Fe等元素浓度水平相对较高.正定矩阵因子分解模型(PMF)结果表明,张掖城区PM2.5的主要贡献源为二次气溶胶(28.0%)、交通源(25.8%)、扬尘源(15.2%)、燃煤源(14.0%)、生物质燃烧和垃圾焚烧源(12.5%)和工艺过程源(4.5%).  相似文献   

15.
李明燕  杨文  魏敏  朱红晓  刘厚凤 《环境科学》2020,41(4):1550-1560
为明确威海市采暖期细颗粒物的组分及来源,于2018年1~3月在威海市3个空气质量例行监测点采集了环境空气PM2.5样品,分析OC、EC、水溶性离子及元素组分特征,利用PMF模型解析PM2.5的来源.结果表明,采样期间威海市PM2.5日均质量浓度为(33.80±22.45)μg·m-3,NO-3、NH+4、SO■、OC和EC是其主要组分.作为沿海城市其Cl-占比相对较高,同时PM2.5组分特征体现出颗粒物成分受本地工业特征污染物排放的影响.NO-3/SO■和OC/EC比值均表明威海市采暖期移动源对PM2.5贡献大;水溶性离子中酸碱离子比例分析表明,威海市采暖期PM2.5呈弱碱性,NH+4过量,主要以NH4NO3...  相似文献   

16.
周敏 《环境科学》2020,41(5):1997-2005
于2014年12月2~24日在上海市城区对大气中细粒子及其化学组分进行了在线连续观测,基于在线数据运用正定矩阵因子分析法(PMF)、化学质量平衡法(CMB)和多元线性模型(ME2)这3种受体模型开展颗粒物源解析并进行相互验证.结果显示,基于在线数据共获得了8类污染源,包括二次硝酸盐、二次硫酸盐、二次有机碳、重油燃烧源、工业源、移动源、扬尘源和燃煤源.其中二次硝酸盐、二次硫酸盐、二次有机碳等二次污染源(44.9%~64.8%)对PM2.5的贡献最大,移动源(16.8%~24.8%)和燃煤源(5.6%~14.9%)的贡献次之,其他源类的贡献相对较小. 3种模型获得的污染源特征组分和来源结果对比表明, 3种模型获得的二次硫酸盐、二次硝酸盐、二次有机碳、移动源的源解析结果较接近,说明模型对这4类源的模拟较好.ME2和PMF模型对燃煤源、扬尘源的拟合结果要好于CMB;工业源则是CMB的结果更好.  相似文献   

17.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是环境空气中一类重要的有毒化合物,为探究兰州市大气细颗粒物(fine particulate matter,PM_(2.5))中PAHs的污染特征,于2012年冬季和2013年夏季采集兰州市PM_(2.5)样品共60个,并进行了GC/MS分析.结果表明,16种PAHs的冬、夏季平均总质量浓度分别为(191.79±88.29)ng·m~(-3)和(8.94±4.34)ng·m~(-3),冬季污染程度明显严重;降雪是导致兰州冬季大气PM_(2.5)中PAHs质量浓度降低最主要的气象因素;冬、夏季PAHs的环数分布均以4环比例最大,分别为51.40%和49.94%,5~6环比例夏季41.04%,高于冬季24.94%,2~3环比例冬季23.67%,高于夏季9.03%;通过PAHs的特征比值分析,兰州大气PM_(2.5)中PAHs的来源冬季以燃煤源和机动车尾气为主,其中柴油车比例较大;夏季汽油车对PAHs的相对贡献较大.  相似文献   

18.
为探讨内陆山区城市湖北省十堰市冬季PM2.5污染特征及来源构成,于2016年1月12日—2月4日在4个采样点位同步采集PM2.5样品,分析了无机元素、水溶性离子、有机碳和元素碳的质量浓度.并采集了十堰市主城区城市扬尘、裸露山体尘、建筑水泥尘、燃煤源、机动车尾气、工业源及餐饮油烟源等7类污染源,初步建立十堰市本地的污染源成分谱库,利用统计学方法研究冬季PM2.5的污染特征,并采用CMB受体模型及“二重源解析技术”分析其来源构成.结果表明:冬季采样期间,十堰市ρ(PM2.5)平均值达到110.65 μg/m3,超过GB 3095—2012《环境空气质量标准》二级标准24 h浓度限值,并且随空气RH(相对湿度)增加污染加重.城区3个采样点PM2.5化学组成及特征的空间差异不明显.PM2.5中ρ(TC)最高,其次是ρ(NO3-)和ρ(SO42-),与二次反应、机动车尾气、煤燃烧等密切相关.ρ(NO3-)/ρ(SO42-)为1.22,说明机动车尾气的影响较大.二次粒子、燃煤源和机动车尾气是十堰市城区冬季大气PM2.5的主要来源,贡献率分别为51.2%、10.9%和10.1%.研究显示,十堰市城区冬季ρ(PM2.5)超过GB 3095—2012二级标准,PM2.5的污染控制应以二次粒子、燃煤和机动车为主,采取多源控制原则.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号