首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied correlations between the frequency of background impulse activity (BIA) of dopaminergic (DAergic) neurons of the ventral tegmentum (VT) and spectral power (SP) of the frequency components of EEG samples recorded in awake cats. The EEG was recorded monopolarly (electrodes were fixed in the cranial bones) from the frontal, occipital, and right and left temporal regions of the cortex. In a great majority of the cases, the BIA frequency of VT DA-ergic neurons demonstrated significant positive correlations with changes in the SPs of the alpha and beta EEG rhythms. The closest correlations of the spiking frequency of DA-ergic cells with the SP of the alpha rhythm was observed in the occipital region, while those with the beta SP were found in the frontal area. Correlations of the activity of DA-ergic neurons with the SPs of the alpha and beta rhythms in the left temporal cortical zone were closer, as compared with those in the symmetrical right zone. Correlations of the SPs of the delta, theta, and gamma EEG components with the discharge frequency of VT DA neurons were of opposite directions, and in most cases such correlations did not reach the level of significance. The results of this study show that, in some cases, specific EEG patterns can be considered indicators of the state of the cerebral VT DA-ergic system. Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 359–367, July–August, 2008.  相似文献   

2.
In chronic experiments on awake cats, we studied the dynamics of the spectral power density (SPD) of the α rhythm vs SPD of the θ rhythm ratio and also of the characteristics of impulse activity generated by supposedly noradrenergic (NA) neurons of the locus coeruleus in the course of feedback (FB) sessions by EEG characteristics (EEG-FB). Trainings were performed using a technique analogous to that in EEG-FB sessions for humans. The level of a sound noise signal presented to the animal decreased with increase in the α/θ SPD ratio in the occipital lead. Changes in the level of the sound signal did not depend on EEG modulation in the control series. The animals were trained to correlate changes in the loudness of the sound signal with the power of EEG rhythms and, in such a way, to control the latter. The α/θ SPD ratio in EEG-FB sessions changed mostly due to a significant increase in the α rhythm power. The frequency of the impulse activity of NA neurons increased in a parallel manner with such EEG modulation. Possible mechanisms of the involvement of the cerebral NA system in the formation of the effects of EEG-FB sessions are discussed.  相似文献   

3.
In experiments on five awake cats, we studied the effects of bemitil, a drug possessing psychostimulatory, antidepressive, and actoprotector properties (peroral introduction, 50 mg/kg), on the activity of neurons of the aminergic cerebral systems. Eleven noradrenergic (NA-ergic) neurons of the locus coeruleus (LC) and 11 serotonergic (ST-ergic) neurons of the nuclei raphe (NR) were examined. A control experimental series was carried out on 8 NA-ergic neurons of the LC and 8 ST-ergic neurons of the NR. Bemitil was found to exert opposite effects on the impulse activity of NA-ergic and ST-ergic brainstem neurons; it suppressed impulsation of LC neurons and increased the spiking frequency of NR neurons within certain time intervals after its introduction. Analysis of EEG showed that bemitil decreased the spectral power of the delta and theta activities, which was accompanied by behavioral relaxation. Neirofiziologiya/Neurophysiology, Vol. 37, No. 3, pp. 235–243, May–June, 2005.  相似文献   

4.
The objective of this work was to explore Neurofeedback (NFB) effects on EEG current sources in Learning Disabled (LD) children, and to corroborate its beneficial consequences on behavioral and cognitive performance. NFB was given in twenty 30-min sessions to 11 LD children to reduce their abnormally high theta/alpha ratios (Experimental Group). Another five LD children with the same characteristics received a placebo treatment (Control Group). In the Control Group no changes in behavior or EEG current source were observed. In the Experimental Group, immediately after treatment children showed behavioral and cognitive improvements, but current source analysis showed few modifications; however, 2 months after treatment many changes occurred: a decrease in current of frequencies within the theta band, mainly in left frontal and cingulate regions, and enhancement in current of frequencies within the alpha band, principally in the right temporal lobe and right frontal regions, and of frequencies within the beta band, mainly in left temporal, right frontal and cingulate cortex regions. In conclusion, NFB is a possibly efficacious treatment for LD children with an abnormally high theta/alpha ratio in any lead. The changes observed in EEG current sources may reflect the neurophysiological bases of the improvement that children experienced in their behavioral and cognitive activities.  相似文献   

5.
Abstract: The c- ret protooncogene encodes Ret, the functional tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF). K-252b, a known protein tyrosine kinase inhibitor, has been shown earlier to inhibit the trophic activity of brain-derived neurotrophic factor on dopaminergic (DAergic) neurons and nerve growth factor on basal forebrain cholinergic neurons while potentiating neurotrophin-3 activity on central cholinergic and peripheral sensory neurons and PC12 cells. We tested whether K-252b would modulate GDNF-induced differentiation in DAergic neuron cultures. Exposure to 1 ng/ml GDNF increased dopamine (DA) uptake 80% above control, whereas treatment with 5 µ M K-252b decreased the efficacy of GDNF by 60%. Concentrations of GDNF of <100 pg/ml were completely inhibited, whereas concentrations of >100 pg/ml were moderately active, between 10 and 20% above control. In addition, K-252b shifted the ED50 from 20 to 200 pg/ml. GDNF treatment increased soma size and neurite outgrowth in tyrosine hydroxylase-immunoreactive neurons. K-252b inhibited differentiation of these morphological parameters induced by GDNF. Furthermore, GDNF stimulated Ret autophosphorylation at maximal levels, whereas the inhibition of DA uptake and morphological differentiation by K-252b correlated with a significantly decreased level of Ret autophosphorylation. Therefore, K-252b is able to inhibit intracellular activities induced by GDNF on mesencephalic DAergic neurons.  相似文献   

6.
Circadian activity rhythms are jointly controlled by a master pacemaker in the hypothalamic suprachiasmatic nuclei (SCN) and by food-entrainable circadian oscillators (FEOs) located elsewhere. The SCN mediates synchrony to daily light-dark cycles, whereas FEOs generate activity rhythms synchronized with regular daily mealtimes. The location of FEOs generating food anticipation rhythms, and the pathways that entrain these FEOs, remain to be clarified. To gain insight into entrainment pathways, we developed a protocol for measuring phase shifts of anticipatory activity rhythms in response to pharmacological probes. We used this protocol to examine a role for dopamine signaling in the timing of circadian food anticipation. To generate a stable food anticipation rhythm, rats were fed 3h/day beginning 6-h after lights-on or in constant light for at least 3 weeks. Rats then received the D2 agonist quinpirole (1 mg/kg IP) alone or after pretreatment with the dopamine synthesis inhibitor α-methylparatyrosine (AMPT). By comparison with vehicle injections, quinpirole administered 1-h before lights-off (19h before mealtime) induced a phase delay of activity onset prior to the next meal. Delay shifts were larger in rats pretreated with AMPT, and smaller following quinpirole administered 4-h after lights-on. A significant shift was not observed in response to the D1 agonist SKF81297. These results provide evidence that signaling at D2 receptors is involved in phase control of FEOs responsible for circadian food anticipatory rhythms in rats.  相似文献   

7.
Khorevin  V. I.  Levchuk  T. E. 《Neurophysiology》2002,34(2-3):150-152
We demonstrate that dopamine itself, a selective dopamine D1 receptor agonist, SKF 38393, and a selective dopamine D2 receptor agonist, quinpirole, exert both facilitatory and suppressive effects on neuronal activity in the sensorimotor cortex of the cat, which is related to a conditioned movement. These effects are mediated by activation of dopamine receptors. Our data can be used for understanding the mechanisms underlying modulation of the excitability of central neurons during various behavioral events under the influence of dopamine.  相似文献   

8.
Using eight-channel metal microelectrodes (diameter of a separate channel 12 μm), we extracellularly recorded the impulse activity of 186 single neurons or their small groups (usually, pairs) localized in the motor cortex of rats anesthetized with ketamine. In 60 cases (32.3%), action potentials (APs) of two single neurons were generated in a parallel manner and demonstrated fixed time relations with each other. This is interpreted as being a result of excitation of two neighboring functionally connected (coupled) cells. These AP pairs could be recorded via one and the same or two neighboring microelectrode channels. Second APs in the pair were elicited exclusively in the case where an AP was preliminarily generated by another neuron, while APs of the latter in some cases could arrive independently. Therefore, “leading” and “accompanying” cells could be identified in such neuronal pairs. The coupling coefficient in the generation of APs by an accompanying unit with respect to APs generated by a leading cell was close to 100%, with no dependence on the discharge frequency in the latter. Intervals between APs of two neurons in different coupled pairs varied from about 1.0 to 22-23 msec. In the case of minimum values of these interspike intervals, APs generated by coupled neurons overlapped each other; this resulted in the formation of spikes looking like “complex APs.” Within some time intervals, interspike intervals could increase, and such APs began to be decomposed. The above-described data are considered electrophysiological proof of the existence of tight functional coupling between a significant part of cortical neurons spatially close to each other, i.e., members of a micropopulation, which was obtained in an in vivo experiment.  相似文献   

9.
Conditional Probability Analyses of the Spike Activity of Single Neurons   总被引:1,自引:0,他引:1  
With the objective of separating stimulus-related effects from refractory effects in neuronal spike data, various conditional probability analyses have been developed. These analyses are introduced and illustrated with examples based on electrophysiological data from auditory nerve fibers. The conditional probability analyses considered here involve the estimation of the conditional probability of a firing in a specified time interval (defined relative to the time of the stimulus presentation), given that the last firing occurred during an earlier specified time interval. This calculation enables study of the stimulus-related effects in the spike data with the time-since-the-last-firing as a controlled variable. These calculations indicate that auditory nerve fibers “recover” from the refractory effects that follow a firing in the following sense: after a “recovery time” of approximately 20 msec, the firing probabilities no longer depend on the time-since-the-last-firing. Probabilities conditional on this minimum time since the last firing are called “recovered probabilities.” The recovered probabilities presented in this paper are contrasted with the corresponding poststimulus time histograms, and the differences are related to the refractory properties of the nerve fibers.  相似文献   

10.

Background

Neurotrophic factors have been shown to possess strong neuroprotective and neurorestaurative properties in Parkinson''s disease patients. However the issues to control their delivery into the interest areas of the brain and their surgical administration linked to their unability to cross the blood brain barrier are many drawbacks responsible of undesirable side effects limiting their clinical use. A strategy implying the use of neurotrophic small molecules could provide an interesting alternative avoiding neurotrophin administration and side effects. In an attempt to develop drugs mimicking neurotrophic factors, we have designed and synthesized low molecular weight molecules that exhibit neuroprotective and neuritogenic potential for dopaminergic neurons.

Principal Findings

A cell-based screening of an in-house quinoline-derived compound collection led to the characterization of compounds exhibiting both activities in the nanomolar range on mesencephalic dopaminergic neurons in spontaneous or 1-methyl-4-phenylpyridinium (MPP+)-induced neurodegeneration. This study provides evidence that rescued neurons possess a functional dopamine transporter and underlines the involvement of the extracellular signal-regulated kinase 1/2 signaling pathway in these processes.

Conclusion

Cell-based screening led to the discovery of a potent neurotrophic compound possessing expected physico-chemical properties for blood brain barrier penetration as a serious candidate for therapeutic use in Parkinson disease.  相似文献   

11.
12.
The purpose of this experiment was to study the possible role of the gastric antrum and small bowel in the rhythm(s) of plasma gastrin. The cat was used as the laboratory animal. Three groups of cats were provided with a gastric fistula for the study of gastric acid and plasma gastrin rhythms. The first group (N = 7) served as controls. A second group (N = 3) was antrectomized and later subjected to a 80% small bowel resection. Gastric acid secretions were collected every 30 min from 0800 to 2400. Blood samples for determination of gastrin were drawn every 2hr from 0800 to 2400. In control animals a circadian (i.e.<24hr) and 3 ultradian (i.e.<24 hr) rhythms were detected for acid output. In the antrectomized cats, circadian and ultradian rhythms were documented. After small bowel resection circadian and ultradian rhythms in gastric acid secretion were observed. For plasma gastrin, circadian and ultradian rhythms were found in the control cats. In the antrectomized cats no rhythms were observed. After small bowel resection an ultradian rhythm reappeared in these antrectomized cats. Removal of the antrum in the cat induces disappearance of circadian and ultradian rhythms of plasma gastrin but fails to modify the acid rhythms. Small bowel resection results in the reappearance of an ultradian rhythm for plasma gastrin and a shift in acrophase for the circadian rhythm in acid secretion.  相似文献   

13.
The mammalian suprachiasmatic nucleus (SCN) is the major endogenous pacemaker that coordinates various daily rhythms including locomotor activity and autonomous and endocrine responses, through a neuronal and humoral influence. In the present study we examined the behavior of dispersed individual SCN neurons obtained from 1- to 3-day-old rats cultured on multi-microelectrode arrays (MEAs). SCN neurons were identified by immunolabeling for the neuropeptides arginine-vasopressin (AVP) and vasoactive intestinal polypeptide (VIP). Single SCN neurons cultured at low density onto an MEA can express firing rate patterns with different circadian phases. In these cultures we observed rarely synchronized firing patterns on adjacent electrodes. This suggests that, in cultures of low cell densities, SCN neurons function as independent pacemakers. To investigate whether individual pacemakers can be influenced independently by phase-shifting stimuli, we applied melatonin (10 pM to 100 nM) for 30 min at different circadian phases and continuously monitored the firing rate rhythms. Melatonin could elicit phase-shifting responses in individual clock cells which had no measurable input from other neurons. In several neurons, phase-shifts occurred with a long delay in the second or third cycle after melatonin treatment, but not in the first cycle. Phase-shifts of isolated SCN neurons were also observed at times when the SCN showed no sensitivity to these phase-shifting stimuli in recordings from brain slices. This finding suggests that the neuronal network plays an essential role in the control of phase-shifts.  相似文献   

14.
Beside its motor functions, the caudate nucleus (CN), the main input structure of the basal ganglia, is also sensitive to various sensory modalities. The goal of the present study was to investigate the effects of visual stimulation on the CN by using a behaving, head-restrained, eye movement-controlled feline model developed recently for this purpose. Extracellular multielectrode recordings were made from the CN of two cats in a visual fixation paradigm applying static and dynamic stimuli. The recorded neurons were classified in three groups according to their electrophysiological properties: phasically active (PAN), tonically active (TAN) and high-firing (HFN) neurons. The response characteristics were investigated according to this classification. The PAN and TAN neurons were sensitive primarily to static stimuli, while the HFN neurons responded primarily to changes in the visual environment i.e. to optic flow and the offset of the stimuli. The HFNs were the most sensitive to visual stimulation; their responses were stronger than those of the PANs and TANs. The majority of the recorded units were insensitive to the direction of the optic flow, regardless of group, but a small number of direction-sensitive neurons were also found. Our results demonstrate that both the static and the dynamic components of the visual information are represented in the CN. Furthermore, these results provide the first piece of evidence on optic flow processing in the CN, which, in more general terms, indicates the possible role of this structure in dynamic visual information processing.  相似文献   

15.
Interspike interval histograms of spontaneous and stimulated activity were computed from spike discharges of single units in the cochlear nucleus. These histograms indicate that a number of different types of spontaneous discharge patterns exist in the nucleus. The type of spontaneous activity of a given unit is related to its activity in response to continuous tones. Correlations were found between the discharge patterns of units and their anatomical locations within the nucleus.  相似文献   

16.
In cortical neurons, spikes are initiated in the axon initial segment. Seen at the soma, they appear surprisingly sharp. A standard explanation is that the current coming from the axon becomes sharp as the spike is actively backpropagated to the soma. However, sharp initiation of spikes is also seen in the input–output properties of neurons, and not only in the somatic shape of spikes; for example, cortical neurons can transmit high frequency signals. An alternative hypothesis is that Na channels cooperate, but it is not currently supported by direct experimental evidence. I propose a simple explanation based on the compartmentalization of spike initiation. When Na channels are placed in the axon, the soma acts as a current sink for the Na current. I show that there is a critical distance to the soma above which an instability occurs, so that Na channels open abruptly rather than gradually as a function of somatic voltage.  相似文献   

17.
The mammalian suprachiasmatic nucleus (SCN) is the major endogenous pacemaker that coordinates various daily rhythms including locomotor activity and autonomous and endocrine responses, through a neuronal and humoral influence. In the present study we examined the behavior of dispersed individual SCN neurons obtained from 1‐ to 3‐day‐old rats cultured on multi‐microelectrode arrays (MEAs). SCN neurons were identified by immunolabeling for the neuropeptides arginine‐vasopressin (AVP) and vasoactive intestinal polypeptide (VIP). Single SCN neurons cultured at low density onto an MEA can express firing rate patterns with different circadian phases. In these cultures we observed rarely synchronized firing patterns on adjacent electrodes. This suggests that, in cultures of low cell densities, SCN neurons function as independent pacemakers. To investigate whether individual pacemakers can be influenced independently by phase‐shifting stimuli, we applied melatonin (10 pM to 100 nM) for 30 min at different circadian phases and continuously monitored the firing rate rhythms. Melatonin could elicit phase‐shifting responses in individual clock cells which had no measurable input from other neurons. In several neurons, phase‐shifts occurred with a long delay in the second or third cycle after melatonin treatment, but not in the first cycle. Phase‐shifts of isolated SCN neurons were also observed at times when the SCN showed no sensitivity to these phase‐shifting stimuli in recordings from brain slices. This finding suggests that the neuronal network plays an essential role in the control of phase‐shifts.  相似文献   

18.
神经元能够将不同时空模式的突触输入转化为时序精确的动作电位输出,这种灵活、可靠的信息编码方式是神经集群在动态环境或特定任务下产生所需活动模式的重要基础。动作电位的产生遵循全或无规律,只有当细胞膜电压达到放电阈值时,神经元才产生动作电位。放电阈值在细胞内和细胞间具有高度可变性,具体动态依赖于刺激输入和放电历史。特别是,放电阈值对动作电位起始前的膜电压变化十分敏感,这种状态依赖性产生的生物物理根源包括Na+失活和K+激活。在绝大多数神经元中,动作电位的触发位置是轴突起始端,这个位置处的阈值可变性是决定神经元对时空输入转化规律的关键因素。但是,电生理实验中动作电位的记录位置却通常是胞体或近端树突,此处的阈值可变性高于轴突起始端,而其产生的重要根源是轴突动作电位的反向传播。基于胞体测量的相关研究显示,放电阈值动态能够增强神经元的时间编码、特征选择、增益调控和同时侦测能力本文首先介绍放电阈值的概念及量化方法,然后详细梳理近年来国内外关于放电阈值可变性及产生根源的研究进展,在此基础上归纳总结放电阈值可变性对神经元编码的重要性,最后对未来放电阈值的研究方向进行展望。  相似文献   

19.
Kang DK  Kim KO  Lee SH  Lee YS  Son H 《Molecules and cells》2000,10(5):546-551
While dopamine is likely to modulate hippocampal synaptic plasticity, there has been little information about how dopamine affects synaptic transmission in the hippocampus. The expression of IEGs including c-fos has been associated with late phase LTP in the CA1 region of the hippocampus. The induction of c-fos by dopaminergic receptor activation in the rat hippocampus was investigated by using semiquantitative RT-PCR and immuno-cytochemistry. The hippocampal slices which were not treated with dopamine showed little expression of c-fos mRNA. However, the induction of c-fos mRNA was detected as early as 5 min after dopamine treatment, peaked at 60 min, and remained elevated 5 h after treatment. Temporal profiles of increases in c-fos mRNA by R(+)-SKF-38393 (50 M) and forskolin (50 M) were similar to that of dopamine. An increase in [cAMP] was observed in dopamine-, SKF-, or forskolin-treated hippocampal slices. By immunocytochemical studies, control hippocampal cells showed little expression of c-Fos immunoreactivity. However, when cells were treated with dopamine, an increase in the expression of c-Fos immunoreactivity was observed after treatment for 2 h. The treatment of hippocampal neurons with R(+)-SKF38393 (50 M) or forskolin (50 M) also induced a significant increase in c-Fos expression. These results indicate that the dopamine D1 receptor-mediated cAMP dependant pathway is associated with the expression of c-Fos in the hippocampal neurons. These data are consistent with the possible role of endogenous dopamine on synaptic plasticity via the regulation of gene expression. Furthermore, these results imply that dopamine might control the process of memory storage in the hippocampus through gene expression.  相似文献   

20.
Changes in intracellular Ca2+ induced by extracellular acidification to pH = 6 were studied in isolated rat spinal dorsal horn neurons using indo-1 fluorescent technique. In all neurons such treatment induced a decrease of basal [Ca2+]i level by 20.8%, preceded in some of them by temporary increase. The changes were completely reversible. The depolarization-induced [Ca2+]i transients became strongly and also reversibly depressed. If tested after termination of acidification, they demonstrated substantial prolongation of their decay phase, reaching 310% at 120 sec after the application of depolarization. To analyze the mechanisms of such changes, mitochondrial protonophore CCCP has been applied between the end of acidification and the depolarizing pulse. This completely eliminated the described slowing of the transients' decay. To the contrary, application of caffeine to induce Ca2+ release from the endoplasmic reticulum did not show significant changes in the corresponding [Ca2+]i transients. A conclusion is made that in mammalian neurons extracellular acidification, apart from inhibiting voltage-operated Ca2+ channels, also substantially alters the Ca2+ exchange function of mitochondria responsible for rapid accumulation of ions and their delayed release back into the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号