首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
用于煤层压裂的锆冻胶压裂液是由无机锆(ZrOCl2)将聚丙烯酰胺(PAM)交联而成的,其优点是在低温下交联成冻。常规使用不同浓度的氧化体系(如过硫酸铵)破胶速度太慢,难以使压裂液在指定的时间内破胶水化,不利于压裂后返排,易对煤层造成伤害。为此,采用氧化还原体系在低温下破胶,研究了温度、聚合物浓度、交联剂浓度、氧化剂浓度、低温活化剂浓度、pH值、矿化度等因素对氧化还原体系低温破胶的影响。结果表明:在所选实验条件范围内,聚合物、交联剂浓度越高,加入盐的浓度越大,则越难破胶;氧化剂、低温活化剂浓度越高,pH值越高(2~5),越容易破胶。  相似文献   

2.
煤层气井用非离子聚丙烯酰胺锆冻胶压裂液优选   总被引:1,自引:0,他引:1  
活性水、瓜胶压裂液是国内煤层气井压裂最常用的压裂液,但活性水压裂液流变性能差,瓜胶压裂液破胶残渣含量高对煤层的伤害大,限制了这两类压裂液在煤层压裂中的应用。为此,针对煤层温度和渗透率低的特点,在分析影响锆冻胶压裂液性能因素的基础上,优选出了适用于煤层气井压裂的非离子型聚丙烯酰胺锆冻胶压裂液配方(0.400%PAM+0.035%ZrOCl2)。通过室内试验对优选出的非离子型聚丙烯酰胺锆冻胶压裂液的性能进行了评价,结果表明,该压裂液具有耐剪切、滤失量低、易破胶、携砂性能好、无残渣、对煤层伤害低、易返排的特点,适用于低温煤层压裂。   相似文献   

3.
压裂液用有机硼锆交联剂OBZ-1   总被引:1,自引:0,他引:1  
本文介绍了一种新型压裂液用交联剂——有机硼锆交联剂OBZ-1。该交联剂具有较强的耐温性及抗剪切性能,对地层的伤害较轻。讨论了该剂的交联机理  相似文献   

4.
压裂液用有机硼锆交联剂OBZ—1   总被引:1,自引:0,他引:1  
张文胜  秦利平 《油田化学》1996,13(3):210-212,218
本文介绍了一种新型压裂液用交联剂-有机硼锆交联剂OBZ-1。该交联剂具有较强的耐温性及抗剪切性能,对地层的伤害较轻。讨论了该交联机理。  相似文献   

5.
本文研究了一种新的堵水剂——锆冻胶堵水荆的制备、封堵能力、突破压力、油或水在堵后岩心中的流动情况、耐冲刷性能、热稳定性、处理单元数与渗透率的关系堵堵剂解堵等问题。证实这种堵剂有一定选择性,具有配制简单、堵水率高、耐地层水冲刷、可堵可解、热稳定性好、无毒性和刺激性、成本低廉等特点。此堵剂可用于油井选择性堵水及注水井吸水剖面的调整。  相似文献   

6.
王家传  向世琪 《油田化学》1990,7(2):134-138
本文用不同直径的毛细管,对四种不同配方的样品进行实验,证实冻胶有壁滑移效应;由实测数据按边界层理论得出了滑移连度的大小;讨论了剪切应力、交联度、管径等对滑移的影响。理论分析得出,有滑移存在时 Fanning 摩擦因子减小,不校正滑移的屈服应力值偏低。  相似文献   

7.
一种硼冻胶压裂液延迟交联体系   总被引:2,自引:0,他引:2  
卢拥军 《油田化学》1993,10(1):28-32
本文分析了硼冻胶压裂液交联机理,提出了硼酸盐延迟交联新体系和定量确定延迟交联时间的方法,研究了影响延迟交联作用的三种因素。延迟交联体系比瞬间交联体系在性能上具有明显的优点。  相似文献   

8.
高温低伤害的有机硼锆CZB-03交联羟丙基瓜尔胶压裂液研究   总被引:3,自引:0,他引:3  
实验研究了有机硼锆交联剂CZB 0 3(有机锆交联剂OZ 1用一种复合吸附抑制剂处理后与等质量的有机硼交联剂OB 2 0 0的复配物 )与HPG的交联性能、冻胶耐温性和伤害性 ,实验体系为加有 0 .3%复合添加剂CA 0 3的0 .6 %HPG/CZB 0 3压裂液。该体系的最佳pH值为 9~ 11,适宜交联比为 10 0∶0 .3~ 0 .4 ,在温度≤ 4 0℃时延缓交联时间为 2~ 4min。该体系的耐温性高于 16 0℃ ,在 16 0℃、170s-1剪切 12 0min ,粘度保持 10 0mPa·s以上。该体系的滤失控制性能较好 ,加入 1%降滤失剂ZJ 1可使 16 0℃、3.5MPa滤失系数C3 (m/min0 .5)由 9.19× 10 -4降到6 .98× 10 -4。加入 0 .0 4 %专用破胶剂EB 0 3,在 16 0℃放置 2h后破胶液粘度为 5 .2mPa·s。CZB 0 3压裂液对支撑裂缝导流能力的伤害远小于OZ 1压裂液 ,略高于OB 2 0 0压裂液 ,在室温和 4 0~ 70MPa下 ,CZB 0 3,OZ 1,OB 2 0 0交联HPG压裂液的伤害率分别在 13.8%~ 16 .1% ,4 9.8%~ 5 1.2 % ,9.1%~ 11.7% ,平均值分别为 14 .7% ,5 0 .4 % ,10 .6 %。图 3表 3参 2。  相似文献   

9.
羟丙基香豆胶-有机锆交联冻胶压裂液的性能   总被引:3,自引:0,他引:3  
实验研究了香豆胶与环氧丙烷在碱催化下反应生成的羟丙基香豆胶的表面活性及其与有机锆生成的耐热剪切的冻胶压裂液的应用性能。羟丙基香豆胶具有弱表面活性,水溶液浓度由0.1%增至0.6%时,表面张力和界面张力略为降低,分别由65.31降至58.22 mN/m,由24.79降至18.35 mN/m。当交联比在100∶0.2~100∶0.5时或pH值在9.0~10.0时,形成的羟丙基香豆胶/锆冻胶黏度高(≥300 mPa.s),有弹性,热剪切稳定性好。交联比100∶0.4的0.7%羟丙基香豆胶/锆冻胶在130~160℃下均为假塑性流体,n值在0.396~0.425范围。在150℃和160℃高温下,该冻胶连续剪切(170 s-1)120 min,仍保有较高黏度(~125和~95 mPa.s),滤失量和滤失速率较小,控制液体滤失能力较好。该冻胶抗盐钙性能好,加入5.0%、6.0%KCl时,25℃表观黏度(412 mPa.s)保持率分别为90.3%、76.2%,加入0.4、0.5、0.6 g/L CaCl2时分别为87.9%、75.5%、53.2%。加入过硫酸铵的冻胶在150℃或160℃放置20 h以上可完全破胶。图2表6参9。  相似文献   

10.
影响锆冻胶成冻因素的研究   总被引:8,自引:3,他引:5  
本文研究的锆冻胶是聚丙烯酰胺(PAM)由氧氯化锆(ZrOCl2)形成的锆的多核羟桥络离子交联而成的.研究了PAM溶液的pH值、ZrOCl2的质量分数、PAM的质量分数、温度、水解度、相对分子质量、矿化度等因素对锆冻胶的成冻时间和冻胶强度的影响.成冻时间和冻胶强度分别由转子旋转法和突破真空度法测定.研究结果表明在实验条件范围内,温度越高,PAM和ZrOCl2的质量分数越大,水解度越低,相对分子质量越高,则锆冻胶的成冻时间均越短;而对于pH值及矿化度,则存在最佳成冻范围,即pH值为4-6,矿化度为8×103-4×104mgL-1时成冻时间最短.研究还证实,锆冻胶的成冻时间与冻胶强度的关系符合一般冻胶所遵循的规律,即成冻时间越短,冻胶的强度越高.锆冻胶在调剖堵水、酸化压裂、防砂等方面有重要的应用.  相似文献   

11.
为构筑与长期CO2驱储层具有更好配伍性的压裂液体系,本文通过正交合成实验,以氧氯化锆、乙二醇、乳酸及氯化铵为原料,成功合成并筛选出可在酸性条件下(pH=1~6)与羧甲基羟丙基胍胶(CMHPG)发生交联反应的有机锆交联剂,系统地评估了有机锆交联CMHPG酸性压裂液体系的成胶时间、成胶强度、流变性能、悬砂和破胶性能、微观结...  相似文献   

12.
新型原油基压裂液研制   总被引:2,自引:0,他引:2  
针对青海花土沟油田储层特征 ,以该油田原油为基液 ,在 3种二元和三元复合磷酸酯中优选出复合磷酸酯YJY A3为增稠剂 ,采用在原油中分散性良好的有机铝盐YJY B为交联剂、有机碱为破胶剂 ,研制了一种新型原油基压裂液。确定了基本配方 :1.8%YJY A3+1.8%JYJ B +1%~ 2 %有机碱 +原油。室内评价表明 :随温度升高 ,在 2 0~ 5 5℃压裂液粘度升高 ,在 5 5~ 70℃粘度基本稳定 ;在 2 5~ 6 0℃、170s- 1 下剪切 6 0min时粘度 >10 0mPa·s;在 2 0~70℃下破胶时间 4~ 8h可调 ;破胶液对 2支储层岩心渗透率的损害率仅为 2 .1%和 4 .2 % ,而常用水基压裂液的损害率为 85 .4 %和 91.2 %。图 6表 1参 2。  相似文献   

13.
二氧化碳泡沫压裂液性能研究   总被引:3,自引:0,他引:3  
对低压、低渗、水敏地层采用CO2泡沫压裂技术,起到增产增注效果。泡沫压裂由于具有地层伤害小、返排迅速、滤失低、粘度高、摩阻低以及携砂能力强等优点,因而在以上储层的改造中得到了广泛应用。研究了影响CO2泡沫压裂液性能的主要因素,如泡沫质量、温度、压力、稠化剂、酸性交联剂,并对CO2泡沫压裂液性能进行了评价。  相似文献   

14.
考察了羟丙基磺基甜菜碱VESBET-4浓度、pH值和无机盐的加入对体系黏度的影响,并评价了VES压裂液(2.5%表面活性剂+0.5%黏土稳定剂)的耐温抗剪切性能、携砂能力及破胶性能。结果表明:当转速达到250 r/min时,质量分数为2%的VESBET-4溶液的黏度可达到600mPa·s以上;该表面活性剂适于在中性及碱性条件下使用;且该表面活性剂与黏土稳定剂NH4Cl、KCl具有良好的配伍性,无机盐的加入基本不影响体系的黏度。该压裂液体系具有良好的耐温耐剪切性能,在温度70℃、剪切速率170s-1下的体系黏度仍高于50 mPa·s,60℃、170s-1下剪切2h后的体系黏度仍高于85mPa·s。同时,单颗砾石的沉降速率为0.95 cm/h,砂比为30%时的砂子沉降速率为1.11cm/h,说明该体系具有良好的携砂造缝能力。使用模拟地层水可对该压裂液体系进行破胶,破胶时间在1 h内,破胶后体系黏度可降至4.27 mPa·s以下。图5表2参12  相似文献   

15.
硼交联羟丙基瓜尔胶压裂液回收再用可行性研究   总被引:5,自引:0,他引:5  
庄照锋  张士诚  张劲  马新仿  秦钰铭 《油田化学》2006,23(2):120-123,135
探讨了羟丙基瓜尔胶/硼冻胶压裂液回收再用的可行性。分析了该压裂液冻胶在无通用破胶剂情况下的非降解性破胶机理,控制因素为pH值和温度,破胶液黏度最低可达基液水平。基于一种有机硼交联HPG冻胶压裂液的实验数据及文献资料,讨论了升温,使用缓释酸及稀释3种非降解性破胶方法。①根据压裂过程中裂缝附近温度场分布设计压裂液,携砂液耐温性只需达到裂缝内的较低温度,地层温度恢复后其黏度将大幅降低;使用产气生热剂可提高裂缝温度。②加入设定量未指明组成的缓释酸使实验压裂液120℃黏度降至<40 mPa.s,补加NaOH后黏度维持>200 mPa.s近3小时。③压裂液与地层水等量混合后破胶,黏度~20 mPa.s,复合清水压裂工艺即基于此原理。不同泵注阶段示踪剂产出曲线表明,影响压裂液返排的因素不只是黏度,某些未破胶压裂液的返排率反而很高;如使用方法适当,缓释酸破胶的返排率可以达到通用氧化型破胶剂破胶的相同水平。国外实践表明,重复使用低分子量瓜尔胶压裂液可提高压裂效果。图7参9。  相似文献   

16.
高温合成聚合物压裂液体系研究   总被引:1,自引:0,他引:1  
根据高温低渗储层压裂改造对压裂液性能的要求,从聚合物分子结构分析入手,以聚丙烯酰胺、聚丙烯酸、2-丙烯酰胺基,2-甲基丙磺酸(AMPS)为单体,合成新型耐高温聚合物,并对其性能进行了评价。实验结果表明,剪切3 h后,压裂液黏度降低1.4 mPa.s,剪切稳定性良好,并且剪切恢复性较好。随着温度的增加,压裂液交联时间逐渐缩短。该压裂液耐温可达170℃。在60℃时,聚合物压裂液破胶困难,可以通过提高破胶剂加量以提高压裂液破胶效果。聚合物压裂液的残渣率为0.83%,对岩心的伤害率为16.7%,对支撑裂缝导流能力的伤害小于植物胶压裂液。适合高温低渗储层的压裂改造。  相似文献   

17.
锆交联黄胞胶驱油体系探索研究   总被引:1,自引:0,他引:1  
王新民  张代森 《油田化学》2003,20(2):157-159
根据27℃,7.34s-1下凝胶的粘度值,确定了调驱用锆交联黄胞胶流动凝胶的组成,选定了凝胶粘度在30~200mPa·s范围的凝胶体系基本配方(单位mg/L):黄胞胶300~700+锆离子浓度200g/L的锆交联剂200~600+36%甲醛液1000~1200+调节剂100~500。在室内评价了凝胶的应用性能:在70℃老化90d使黄胞胶浓度为500和700mg/L的凝胶粘度分别由137.0和286.9mPa·s降至102.0和182.5mPa·s;在NaCl浓度由0增至50~600g/L时,浓度为600mg/L的凝胶粘度由130mPa·s变为122~137mPa·s;此凝胶耐机械剪切能力很强;在渗透率6.37~43.0μm2的岩心上此凝胶的注入性良好;在渗透率2.37和3.12μm2的2支岩心上,在水驱至含水96%后注入0.33或0.35PV凝胶,采收率分别提高16.3%和17.0%。图3表5参4。  相似文献   

18.
针对一般泡沫压裂液存在成本高、专用设备多、施工风险高等缺点,研制出一种自生气类泡沫压裂液。该泡沫压裂液实验基础配方为:(0.5%~1.5%)NH4Cl+(0.5%~1.5%)NaNO2+(0.5%~5%)弱酸+0.5%pH调节剂+(0.3%~0.6%)GHPG(稠化剂)+(0.5%~1.5%)CT 5-2(起泡剂)+1.0%AC-8(酸性交联剂)+0.04%(NH4)2SO4+0.05%杀菌剂+0.1%助排剂。评价结果表明,该体系具有良好的耐温耐剪切性能和流变性能,携砂能力强,低滤失,破胶性能良好,对储层岩心伤害小,可以满足大多数泡沫压裂施工的需要,在低压低渗油气田具有广阔的推广应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号