首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metal selenocarboxylate salts (PPh4)[M(SeC[O]Tol)3] (M = Zn (1), Cd (2) and Hg (3); Tol = C6H4-p-CH3) have been synthesized by reacting Zn(NO3)2 .6H2O, Cd(NO3)2 .4H2O or HgCl2 with (Na+)TolC[O]Se- and PPh4Cl in the ratio of 1 : 4 : 1. The structures of these compounds were determined by single-crystal X-ray diffraction methods. The crystal structures contain discrete cations and anions. In the each anion, the metal center is bound to three TolC[O]Se ligands, primarily through Se, though some long M...O interactions also occur. NMR spectra (113Cd, 199Hg and 77Se, as appropriate) are reported for solutions of [M(SeC[O]Tol)3]-, and of [M(SeC[O]Tol)3](-) - [M(SC[O]Ph)3]- mixtures (M = Zn-Hg), in CH2Cl2 at reduced temperatures. In addition, ESI-MS data have been obtained for [M(SeC[O]Tol)(3)](-) - [M(SC[O]Ph)3]- mixtures (M = Zn-Hg) in acetone and in CH2Cl2. The NMR and ESI-MS studies show that the complexes [M(SeC[O]Tol)n(SC[O]Ph)(3-n)]- (n= 3-0) persist in solution.  相似文献   

2.
Exploiting the ability of the [M(SC[O]Ph)(4)](-) anion to behave like an anionic metalloligand, we have synthesized [Li[Ga(SC[O]Ph)(4)]] (1), [Li[In(SC[O]Ph)(4)]] (2), [Na[Ga(SC[O]Ph)(4)]] (3), [Na(MeCN)[In(SC[O]Ph)(4)]] (4), [K[Ga(SC[O]Ph)(4)]] (5), and [K(MeCN)(2)[In(SC[O]Ph)(4)]] (6) by reacting MX(3) and PhC[O]S(-)A(+) (M = Ga(III) and In(III); X = Cl(-) and NO(3)(-); and A = Li(I), Na(I), and K(I)) in the molar ratio 1:4. The structures of 2, 4, and 6 determined by X-ray crystallography indicate that they have a one-dimensional coordination polymeric structure, and structural variations may be attributed to the change in the alkali metal ion from Li(I) to Na(I) to K(I). Crystal data for 2 x 0.5MeCN x 0.25H(2)O: monoclinic space group C2/c, a = 24.5766(8) A, b = 13.2758(5) A, c = 19.9983(8) A, beta = 108.426(1) degrees, Z = 8, and V = 6190.4(4) A(3). Crystal data for 4: monoclinic space group P2(1)/c, a = 10.5774(7) A, b = 21.9723(15) A, c = 14.4196(10) A, beta = 110.121(1) degrees, Z = 4, and V = 3146.7(4) A(3). Crystal data for 6: monoclinic space group P2(1)/c, a = 12.307(3) A, b = 13.672(3) A, c = 20.575(4) A, beta = 92.356(4) degrees, Z = 4, and V = 3458.8(12) A(3). The thermal decomposition of these compounds indicated the formation of the corresponding AMS(2) materials.  相似文献   

3.
A general synthetic approach for the synthesis of 15N- and 17O-doubly labelled pyrimidine nucleosides is described. The 15N isotopes in uridine and the 17O isotope in the urea-derived carbonyl group of uridine and cytidine originate from (15N2)[17O]urea ( 5 ) which was synthesized from 15NH4Cl, thiophosgene ( 1 ), and H2[17O]. The third 15N isotope of cytidine in 4-position stems from the substitution of the 1,2,4-triazole moiety of (15N2)[O2-17O]uridine derivative 8a/b with 15NH4OH. Hydrolysis of the same key intermediate 8a/b with Na[17O]H/H2[17O] introduced the second 17O isotope into the 4-position of uridine. The 15N- and 17O-NMR spectra of the target compounds 12 and 14 in phosphate-buffered H2O serve as references for heteronuclear NMR spectra of labelled RNA fragments.  相似文献   

4.
Thermal analysis of the pseudoternary systems Na4P2O7-WO3-NaCl and K4P2O7-WO3-KCl was performed, and the crystallization fields were revealed of sodium and potassium pyrophosphates, incongruently melting compounds Na4P2O7·3WO3 and K4P2O7·3WO3, and of products formed by reactions of WO3 with NaCl and KCl. Low-melting compositions were revealed, which are of interest for preparing Na(K)-W oxide bronzes.  相似文献   

5.
6.
A convenient synthesis and a full characterization of the strong acid bis[bis(pentafluoroethyl)phosphinyl]imide and some of its salts M (+)N[(C 2F 5) 2P(O)] 2 (-), M = Na, K, Cs, Ag, Me 4N, are presented. Their thermal (mp, T dec.) and spectroscopic (IR, Raman, NMR) properties are discussed. A single crystal structure of [Me 4N][N{P(O)(C 2F 5) 2} 2] has been obtained, and the structural parameters of the anion are compared with the results of quantum-chemical calculations. The observed properties are comparable to those of bis((trifluoromethyl)sulfonyl)imide and their derivatives.  相似文献   

7.
Cobalt bis(oxalato)nickelate pentahydrate, Co[Ni(C2O4)2]5H2O and cadmium bis(oxalato)nickelate tetrahydrate, Cd[Ni(C2O4)2]4H2O have been synthesized and characterized by elemental analysis, reflectance and IR spectral studies. Thermal decomposition studies (TG, DTG and DTA ) in air showed that both the compound of cobalt and cadmium produced the oxide, MNiOx (x=3 for M=Co; x=2 for M=Cd ) at 325 and 360°C respectively. DSC studies in nitrogen attributed only the mixture of both the metal at the end. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Addition of 1 equiv of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) to U(NR(2))(3) in hexanes affords U(O)(NR(2))(3) (2), which can be isolated in 73% yield. Complex 2 is a rare example of a terminal U(V) oxo complex. In contrast, addition of 1 equiv of Me(3)NO to U(NR(2))(3) (R = SiMe(3)) in pentane generates the U(IV) bridging oxo [(NR(2))(3)U](2)(μ-O) (3) in moderate yields. Also formed in this reaction, in low yield, is the U(IV) iodide complex U(I)(NR(2))(3) (4). The iodide ligand in 4 likely originates from residual NaI, present in the U(NR(2))(3) starting material. Complex 4 can be generated rationally by addition of 0.5 equiv of I(2) to a hexane solution of U(NR(2))(3), where it can be isolated in moderate yield as a tan crystalline solid. The solid-state molecular structures and magnetic susceptibilities of 2, 3, and 4 have been measured. In addition, the electronic structures of 2 and 3 have been investigated by density functional theory (DFT) methods.  相似文献   

9.
Neutral trinuclear metal complexes L2Cd3 x 2H2O, L2Mn3 x MeOH, and L2Zn3 x MeOH were isolated in the reaction between the phosphorus-centered achiral tris(hydrazone) P(S)[N(Me)N=CHC6H(4)-o-OH]3 (LH3) and the corresponding divalent metal ions. The trinuclear complexes contain two equivalent terminal metal ions (M(t)) and a central metal ion (M(c)). The ligand encapsulates M(t) in a facial N3O3 coordination environment. From the coordination sphere of the two terminal metal ions a pair of phenolic oxygen atoms further coordinate to the central metal ion. The coordination requirements of M(c) are completed by the solvents of coordination. The achiral trianionic tripodal ligand (L)3- induces chirality in the metal complexes. This results in a delta (clockwise) or lambda (anticlockwise) configuration for the terminal metal ions. The enantiomeric complexes 2-4 (delta-delta or lambda-lambda) crystallize as racemic compounds. The supramolecular structures of 2-4 reveal chiral recognition in the solid-state; every molecule with the delta-delta configuration interacts stereospecifically, through C-H...S=P bonds, with two lambda-lambda molecules to generate a one-dimensional polymeric chain. Photophysical studies of the diamagnetic trinuclear complexes reveal that the tricadmium complex is luminescent in the solid state as well as in solution. In contrast LH3 and L2Zn3 x MeOH are nonluminescent.  相似文献   

10.
11.
Bis(2-furoinate)triphenyl- and tri-p-tolylantimony and bis(3-niacinate)triphenylanitmony were synthesized by reacting triarylantimony (Ar3Sb; Ar = Ph, p-Tol) with 2-furancarboxylic and 3-pyridinecarboxylic acids in the presence of hydrogen peroxide. According to X-ray diffraction data, Sb atoms have trigonal bipyramidal coordination polyhedra. The Sb–O distances are 2.117(4), 2.137(4) Å; 2.136(2), 2.158(2) Å, and 2.112(1), 2.101(2) Å, the Sb···O distances are 2.866(4), 2.798(4) Å; 2.816(2), 2.774(2) Å, and 3.054(2), 3.168(2) Å, respectively.  相似文献   

12.
Two supramolecular crown ether complexes [Na(DC18C6-A)(H2O)]{[Na(DC18C6-A)][Cd(mnt)2]} (1) and [K(DC18C6-A)]2[Cd(mnt)2] (2) (DC18C6-A = cis-syn-cis-dicyclohexyl-18-crown-6, isomer A; mnt = maleonitriledithiolate) have been synthesized and characterized by elemental analysis, FT-IR spectroscopy and X-ray single crystal diffraction. Complex 1 is composed of one [Na(DC18C6-A)(H2O)]+ complex cation and one {[Na(DC18C6-A)][Cd(mnt)2]}complex anion and displays an infinite chain-like structure through N–Na–N interactions. In complex 2, [K(DC18C6-A)]+ complex cation and [Cd(mnt)2]2− complex anion afford a novel 1D ladder-like structure by N–K–N, N–K–S interactions.  相似文献   

13.
Studies of Polyhalides. 22. On Dimethyldiphenylammoniumpolyiodides (Me2Ph2N)In with n = 3, 13/3, 6, and 8: Preparation and Crystal Structures of a Triiodide (Me2Ph2N)I3, Tridecaiodide (Me2Ph2N)3I13, Dodecaiodide (Me2Ph2N)2I12, and Hexadecaiodide (Me2Ph2N)2I16 The new compounds [(CH3)2(C6H5)2N]I3, [(CH3)2(C6H5)2N]3I13, [(CH3)2(C6H5)2N]2I12 and [(CH3)2(C6H5)2N]2I16 have been prepared by the reaction of dimethyldiphenylammonium iodide [(CH3)2(C6H5)2N]I with iodine I2 in ethanol. Their crystal structures have been determined by single crystal X-ray diffraction methods. The structure of the triiodide may be described as a layerlike packing of pairs of nearly linear symmetric anions and tetraedral cations. The tridecaiodide forms zig-zag chains of iodide ions and iodine molecules with the iodide ion also weakly coordinated by two pentaiodide groups. The dodecaiodide is built from two pentaiodide-groups, which are bridged by an iodine molecule and connected with secondary bonds forming double chains. The hexadecaiodide ion forms layers built up from two heptaiodide groups and one iodine molecule. Thus the dimethyldiphenylammonium cation stabilizes a unique series of polyiodides of extraordinary composition and structure.  相似文献   

14.
15.
The homoleptic complexes [Ph(4)P](2)[Co[N(CN)(2)](4)] and [Ph(4)P][M[N(CN)(2)](3)] [M = Co, Mn] have been structurally as well as magnetically characterized. The complexes containing [M[N(CN)(2)](4)](2-) form 1-D chains, which are bridged via a common dicyanamide ligand in [M[N(CN)(2)](3)](-) to form a 2-D structure. The five-atom [NCNCN](-) bridging ligands lead to weak magnetic coupling along a chain. The six [NCNCN](-) ligands lead to a (4)T(1g) ground state for Co(II) which has an unquenched spin-orbit coupling that is reflected in the magnetic properties. Long-range magnetic ordering was not observed in any of these materials.  相似文献   

16.
IR spectra of Mn(NH3)2M(CN)4·2C6H6 (M=Cd or Hg), and IR and Raman spectra of Cd(NH3)2M(CN)4·2C6H6 (M=Cd or Hg) are reported. The spectral data suggest that the former two compounds are similar in structure to the latter two Td-type clathrates.  相似文献   

17.
18.
用水热合成出系列化合物MSn2(PO4)3(M=Na,K,NH4),该化合物具有NASICON型三维骨架结构,测得其晶胞参数为:(1)NaSn2(PO4)3,a=0.852692)nm,c=2.247(4)nm;(2)KSn2(PO4)3,a=0.8366(1)nm,c=2.356(4)nm;(3)NH4Sn2(PO4)3,a=0\8330(1)nm,c=2\390(5)nm.热分析结果表明,在较  相似文献   

19.
The thermally stable silylene Si[(NCH(2)Bu(t))(2)C(6)H(4)-1,2] 1 undergoes oxidative addition reactions with the alkali metal silylamides MN(SiMe(3))(2)(M = Li, Na or K) to afford the new alkali metal amides MN(SiMe(3))[(1)SiMe(3)][M = Li (2), Na (3) or K (4)]. Reaction of two equivalents of 1 with LiN(R)(SiMe(3)) leads in a two-step process to the compound LiN[(1)R][(1)SiMe(3)][R = SiMe(2)Ph (5) or SiMe(3) (6)]. Alternatively, 1 reacts with 3 to afford NaN[(1)SiMe(3)](2) (7). The structures of 2-5 and are presented and the formation of 2-7 is discussed.  相似文献   

20.
Single phase powders of (A19N7)[In4]2 (A = Ca, Sr) and (Ca4N)[In2] were prepared by reaction of melt beads of the metallic components with nitrogen. The crystal structure of (Ca19N7)[In4]2 was refined based on neutron and X‐ray powder diffraction data. The crystal structure of (Sr19N7)[In4]2 was solved from the X‐ray powder pattern. The structure refinements in combination with results from chemical analyses ascertain the compositions. The compounds (A19N7)[In4]2 (A = Ca, Sr) are isotypes of (Ca19N7)[Ag4]2; (Ca19N7)[In4]2 is probably identical to the earlier reported (Ca18.5N7)[In4]2. The crystal structure of the isotypes (A19N7)[In4]2 (A = Ca, Sr; cubic, , Ca: a = 1471.65(3) pm; Sr: a = 1561.0(1) pm) contains isolated [In4] tetrahedra embedded in a framework of edge‐ and vertex‐sharing (A6N) octahedra. Six of these octahedra are condensed by edge‐sharing around one central A2+ ion to form “superoctahedra” (A19N6) which are connected three‐dimensionally via further octahedra by corner‐sharing. The crystal structure of (Ca4N)[In2] (tetragonal, I41/amd, a = 491.14(4) pm, c = 2907.7(3) pm) consists of alternating layers of perovskite type slabs of vertex‐sharing octahedra (Ca2Ca4/2N) and parallel arranged infinite zigzag chains equation/tex2gif-stack-1.gif[In2]. In the sense of Zintl‐type counting the compounds (A2+)19(N3?)7[(In2.125?)4]2 present an electron excess, (Ca2+)4(N3?)[(In2.5?)2] is electron deficient. Metallic properties are supported by electrical resistivity and magnetic susceptibility measurements. The analysis of the electronic structures gives evidence for the existence of homoatomic interactions In–In and significant heteroatomic metal–metal interactions Ca–In which favor the deviations of the title compounds from the (8 – N) rule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号