首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species co-occurrence at fine spatial scales is expected to be nonrandom in relation to species phylogenetic relatedness and functional similarity. On the one hand, closely related species that occur together and experience similar environmental conditions are likely to share phenotypic traits due to the process of environmental filtering. On the other hand, species that are too similar are unlikely to co-occur due to competitive exclusion. We surveyed a woodland cerrado, southeastern Brazil, to test whether co-occurrence in tree species shows functional or phylogenetic structuring at fine spatial scale. Searching for correlations between an index of species co-occurrence and both functional trait differences and phylogenetic distances, we provided evidence for a predominant role of environment filters in determining the co-occurrence of functionally similar tree species in cerrado. However, we did not find any effect of phylogenetic relatedness on tree species co-occurrence. We suggest that the phylogenetic relatedness of co-occurring cerrado tree species did not present a pattern, because the species functional traits were randomly distributed on the phylogeny. Thus, phylogenetic relatedness and functional similarity do not seem to limit the co-occurrence at fine spatial scale of cerrado tree species.  相似文献   

2.
Soil, drought, and fire are abiotic factors that may act as environmental filters in the cerrado, the Brazilian savanna. We used a framework to analyze environmental filtering in geographic and phylogenetic context, sampling woody species in one of the largest cerrado reserves. In 100 quadrats, we measured 10 functional traits on each woody individual. We also measured several soil variables, altitude and slope as a rough surrogate of water availability, interval between fires, and time since last fire. Almost all environmental variables were spatially auto-correlated. We found an overall trait clustering, but not an overall phylogenetic clustering. Nevertheless, we found a phylogenetic signal for some traits. Linking phylogeny, traits, environment, and space, we were able to detect a major dichotomy between two geomorphological units. The flat tableland was positively related with altitude, fire frequency, and nutrient-richer soil. Environmental filtering caused by water availability and fire lead to trait clustering, with smaller shrubs and trees that presented thicker barks, denser woods, sclerophyllous leaves, highlighted by the prevalance of Myrtaceae. The other geomorphological unit, hilly terrain, was positively related with slope, low fire frequency, and nutrient-poorer soil. Environmental filtering was caused especially by nutrient-poor soil that lead to trait clustering, assembling taller trees, with thinner barks, lighter woods, and compound, large, tender, nutrient-richer leaves, distributed across many lineages, including Fabaceae. Hence, the high environmental variability in space with different environmental filters assembled different combination of plant traits and lineages, increasing the overall diversity in cerrado.  相似文献   

3.
4.
Question: What is the relative importance of environmental and spatial factors for species compositional and phylogenetic turnover? Location: High‐rainfall zone of the Southwest Australian Floristic Region (SWAFR). Methods: Correlates of species compositional turnover were assessed using quadrat‐based floristic data, and establishing relationships with environmental and spatial factors using canonical correspondence analyses and Mantel tests. Between‐quadrat phylogenetic distance measures were computed and examined for correlations with environmental and spatial attributes. Processes structuring pa2t2terns of beta diversity were also evaluated within four broad floristic assemblages defined a priori. Results: Floristic diversity was strongly related to environmental attributes. A low significance of spatial variables on assemblage patterns suggested no evident effect of dispersal limitations. Species compositional turnover was especially high within the swamp and outcrop assemblage. Phylogenetic turnover was closely coupled to species compositional turnover, implying the occurrence of many locally endemic and phylogenetically relict taxa. Beta diversity patterns within assemblages were also significantly correlated with the local environment, and relevant correlates differed between floristic assemblage types. Conclusion: Phylogenetic diversity in the SWAFR high‐rainfall zone is clustered within edaphic microhabitats in a generally subdued landscape. A clustered rather than dispersed distribution of phylogenetic diversity increases the probability of significant plant diversity loss during periods of climate change. Climate change susceptibility of the region's flora is accordingly estimated to be high. We highlight the conservation significance of swamp and outcrops that are characterized by distinct hydrological properties and may provide refugial habitat for plant diversity during periods of moderate climate change.  相似文献   

5.
Genetic responses to environmental changes take place at different spatial scales. While the effect of environment on the distribution of species' genetic diversity at large geographical scales has been the focus of several recent studies, its potential effects on genetic structure at local scales are understudied. Environmental effects on fine‐scale spatial genetic structure (FSGS) were investigated in four Alpine conifer species (five to eight populations per species) from the eastern Italian Alps. Significant FSGS was found for 11 of 25 populations. Interestingly, we found no significant differences in FSGS across species but great variation among populations within species, highlighting the importance of local environmental factors. Interannual variability in spring temperature had a small but significant effect on FSGS of Larix decidua, probably related to species‐specific life history traits. For Abies alba, Picea abies and Pinus cembra, linear models identified spring precipitation as a potentially relevant climate factor associated with differences in FSGS across populations; however, models had low explanatory power and were strongly influenced by a P. cembra outlier population from a very dry site. Overall, the direction of the identified effects is according to expectations, with drier and more variable environments increasing FSGS. Underlying mechanisms may include climate‐related changes in the variance of reproductive success and/or environmental selection of specific families. This study provides new insights on potential changes in local genetic structure of four Alpine conifers in the face of environmental changes, suggesting that new climates, through altering FSGS, may also have relevant impacts on plant microevolution.  相似文献   

6.
The extent to which species’ ecological and phylogenetic relatedness shape their co‐occurrence patterns at large spatial scales remains poorly understood. By quantifying phylogenetic assemblage structure within geographic ranges of >8000 bird species, we show that global co‐occurrence patterns are linked – after accounting for regional effects – to key ecological traits reflecting diet, mobility, body size and climatic preference. We found that co‐occurrences of carnivorous, migratory and cold‐climate species are phylogenetically clustered, whereas nectarivores, herbivores, frugivores and invertebrate eaters tend to be more phylogenetically overdispersed. Preference for open or forested habitats appeared to be independent from the level of phylogenetic clustering. Our results advocate for an extension of the tropical niche conservatism hypothesis to incorporate ecological and life‐history traits beyond the climatic niche. They further offer a novel species‐oriented perspective on how biogeographic and evolutionary legacies interact with ecological traits to shape global patterns of species coexistence in birds.  相似文献   

7.
8.
The limited dispersal ability of earthworms is expected to result in marked genetic isolation by distance and remarkable spatial patterns of genetic variation. To test this hypothesis, we investigated, using microsatellite loci, the spatial genetic structure of two earthworm species, Allolobophora chlorotica and Aporrectodea icterica, in two plots of less than 1 ha where a total of 282 individuals were collected. We used spatial autocorrelation statistics, partial Mantel tests of isolation‐by‐distance (IBD) and isolation‐by‐resistance (IBR), and Bayesian test of clustering to explore recent patterns involved in the observed genetic structure. For A. icterica, a low signal of genetic structure was detected, which may be explained by an important dispersal capacity and/or by the low polymorphism of the microsatellite loci. For A. chlorotica, a weak, but significant, pattern of IBD associated with positive autocorrelation was observed in one of the plots. In the other plot, which had been recently ploughed, two genetically differentiated clusters were identified. These results suggest a spatial neighbourhood structure in A. chlorotica, with neighbour individuals that tend to be more genetically similar to one another, and also highlight that habitat perturbation as a result of human activities may deeply alter the genetic structure of earthworm species, even at a very small scale. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 335–347.  相似文献   

9.
10.
11.
12.
Invasive herbivores are often managed to limit their negative impact on plant populations, but herbivore density – plant damage relationships are notoriously spatially and temporally variable. Site and species characteristics (both plant and herbivore) must be considered when assessing the potential for herbivore damage, making it difficult to set thresholds for efficient management. Using the invasive brushtail possum Trichosurus vulpecula in New Zealand as a case study, we parameterized a generic model to predict annual probability of browse‐induced mortality of five tree species at 12 sites. We compared predicted and observed tree mortality for each species + site combination to establish herbivore abundance – tree mortality thresholds for each site on a single and combined tree species basis. Model results indicated it is likely that possum browse was the primary cause of all tree mortality at nine of the 12 species‐site combinations, allowing us to estimate site‐specific thresholds below which possum population numbers should be reduced and maintained to keep tree mortality under a predetermined level, for example 0.5% per year. The browse model can be used to set site‐ and species‐specific management action thresholds, and can be adapted easily for other plant or herbivore species. Results for multiple plant or herbivore species at a single site can be combined to create conservative, site‐wide management strategies, and used to: determine which sites will be affected most by changes in herbivore abundance; quantify thresholds for herbivore management; and justify expenditure on herbivore control.  相似文献   

13.
14.
15.
16.
Caño L  Escarré J  Vrieling K  Sans FX 《Oecologia》2009,159(1):95-106
This paper tests the prediction that introduced plants may become successful invaders because they experience evolutionary changes in growth and defence in their new range [evolution of increased competitive ability hypothesis (EICA)]. Interspecific and intraspecific binary feeding choices were offered to the snail Helix aspersa. The choices were between: (1) plants of the invasive Senecio inaequidens and Senecio pterophorus derived from populations in the introduced range (Europe) and plants of three indigenous species (Senecio jacobea, Senecio vulgaris and Senecio malacitanus) from populations in Europe; (2) plants of the invasive S. inaequidens and S. pterophorus from populations in the introduced range (Europe) and from populations in the native range (South Africa). We did not find a clear pattern of preference for indigenous or alien species of Senecio. However, we found that European invasive populations of S. inaequidens and S. pterophorus were less palatable than South African native populations. Moreover, in contrast to the predictions of the EICA hypothesis, the invasive genotypes of both species also showed a higher total concentration of pyrrolizidine alkaloids, and in the case of S. inaequidens we also found higher growth than in native genotypes. Our results are discussed with respect to the refinement of the EICA hypothesis that takes into account the difference between specialist and generalist herbivores and between qualitative and quantitative defences. We conclude that invasive populations of S. inaequidens and S. pterophorus are less palatable than native populations, suggesting that genetic differentiation associated with founding may occur and contribute to the plants’ invasion success by selecting the best-defended genotypes in the introduced range.  相似文献   

17.
18.
19.
Comparative studies investigating relationships between plant traits and species rarity and commonness were surveyed to establish whether global patterns have emerged that would be of practical use in management strategies aimed at the long‐term conservation of species. Across 54 studies, 94 traits have been examined in relation to abundance, distribution and threatened status at local, regional and geographical spatial scales. Most traits (63) have yet to be the focus of more than one study. Half of the studies involved less than 10 species, and one‐quarter did not replicate rare–common contrasts. Although these features of the literature make it difficult to demonstrate robust generalizations regarding trait relationships with species rarity, some important findings surfaced in relation to traits that have been examined in two or more studies. Species with narrow geographical distributions were found to produce significantly fewer seeds (per unit measurement) than common species (in four of six studies), but did not differ with respect to breeding system (five of five studies). The majority of traits (including seed size, competitive ability, growth form and dispersal mode) were related to rarity in different ways from one study to the next. The highly context‐dependent nature of most trait relationships with rarity implies that application of knowledge concerning rare–common differences and similarities to management plans will vary substantially for different vegetation types and on different continents. A comparative analysis of distribution patterns in relation to several life‐history and ecological traits among 700 Australian eucalypt species was then performed. A significantly dispro­portionate number of tall species and species with long flowering durations had wide geographical ranges. Trait relationships with distribution were explored further through the development of a methodology incorporating multiple spatial scales. Eight theoretical categories were described illustrating variation in distribution patterns (and hence rarity and commonness) across small, intermediate and large spatial scales, based on the spatial structure of species occurrence across the Australian landscape. Each eucalypt species was placed into a category, and trait variation was explored across all species in relation to distribution patterns across multiple spatial scales. This approach yielded important information about trait relationships with distribution among the eucalypts, linking the spatial structure of points‐of‐occurrence with patterns of rarity and commonness. With the pressing need to protect increasing numbers of threatened species and slow rates of extinction, the development and refinement of a broadly usable methodology for rarity studies that encompasses multiple spatial scales, which can be used for any geographical location, will be useful in both conservation and management.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号