首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
卢钢 《煤炭与化工》2023,(3):67-70+75
深部岩体构造应力显著,超千米采深煤层在开采时矿压显现剧烈,底鼓及底板破坏严重,底板应力影响深远,存在扰动承压水导升带,从而导通含水层造成突水的危险。本文根据华北型煤田邢东矿超千米采深工作面实际开采情况,建立室内物理模拟模型,在煤层底板布置应力盒,研究大采深工作面推进过程中底板应力分布特征。试验结果表明,底板近煤层水平向,超前支承压力影响范围为100 m;采动对底板的应力影响范围到达伏青灰岩含水层附近,应力影响深度为底板以下90 m。反映底板破坏带之下还存在一定区域,随回采产生了应力扰动。研究成果对于大采深煤层的安全回采具有理论指导意义。  相似文献   

2.
《煤炭技术》2016,(10):78-80
结合矿山典型工作面开采技术条件,把顶板岩层、煤层和底板岩层作为一个整体进行综合研究,考虑三者之间的作用与影响,利用弹性薄板和岩石力学理论,对老顶初次来压、周期来压、煤岩体强度参数降低等情况下工作面煤层底板岩层破坏深度的理论值进行了计算,得出了工作面长度和煤层底板岩层破坏深度之间的关系,定量地分析了工作面长度与煤岩体强度参数对煤层底板破坏深度的影响,为承压水开采下增加面长提供了理论依据。  相似文献   

3.
基于正交试验的底板破坏深度主控因素敏感性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
刘伟韬  刘士亮  姬保静 《煤炭学报》2015,40(9):1995-2001
为了研究底板破坏深度的影响因素,考虑工作面倾斜长度、采厚、采深、不同底板岩层力学参数和承压水水压,采用FLAC3D软件模拟底板破坏深度,运用正交试验法对模拟结果分析,研究影响底板破坏深度主控因素敏感性。研究结果表明,工作面斜长、采深、采厚对底板破坏深度的敏感性主次顺序为工作面斜长采深采厚;抗拉强度对底板拉破坏深度的影响为高度显著;底板岩层黏聚力、内摩擦角对底板破坏深度及拉破坏深度的敏感性不显著;抗拉强度、内摩擦角对剪破坏深度的敏感性较弱,黏聚力对底板剪破坏深度具有显著性影响;随着承压水压力的增加,底板中水平最小主应力与承压水压力越来越接近,且水平应力值接近水压的岩层范围增大,导致突水的危险性增加。  相似文献   

4.
《煤炭技术》2017,(10):43-45
针对寺河矿3~#煤层带压开采问题,选取W2302综采工作面为工程背景,进行底板破坏深度研究。采用现场压水试验方法,对该工作面底板破坏规律进行采前、采后全过程实测,利用FLAC~(3D)数值模拟软件,对底板破坏深度和型态进行了数值仿真。研究结果表明:现场实测该工作面采后底板最大破坏深度为17.8 m;数值模拟底板破坏最大破坏深度为20 m,二者结果基本相吻合。  相似文献   

5.
煤层开采后采空区四周形成不同程度的支承压力带,其中应力卸载与集中会向底板深部传递,进而影响到底板的破坏深度与范围。本文建立了综合考虑工作面走向与倾向受力特点的空间半无限体模型,推导出了底板垂直应力的迭代计算式,并采用数学软件 MATHCAD 计算出了不同深度处底板的应力分布情况,结果表明:底板各岩层垂直应力等值线呈椭圆形,浅部岩层等值线梯度较大,深部岩层等值线梯度较小。基于应力理论分析结果及Mohr-Coulomb准则计算出某矿底板最大破坏深度14.8 m,现场微震监测结果显示底板最大破坏深度15.2 m,两者相吻合。本文的研究成果可为围岩控制及承压水上安全采煤研究提供理论依据。  相似文献   

6.
廖志恒 《煤矿安全》2018,(4):185-188
为研究承压水上膏体充填开采底板采动破坏特征,以岱庄煤矿11607工作面的采场条件为工程背景,基于FLAC~(3D)数值仿真软件,建立承压水上膏体充填开采流-固耦合数值模型,对充填工作面回采过程中煤层底板的破坏特征进行了研究分析。研究表明:充填开采采动底板的承压水导升高度不明显,煤层底板破坏深度在工作面推进至12.4 m后趋于平缓,且当工作面推进至100 m时达到底板最大破坏深度仅为6 m,理论计算了充填工作面采动底板的最大破坏深度范围为3.83~5.27 m,采用单孔恒定水压法对11607工作面底板进行现场实测,测得底板最大破坏深度为6.50 m,与理论计算、数值模拟所得结果基本吻合。  相似文献   

7.
赵剑 《同煤科技》2021,(3):26-29,33
在辛置煤矿地质水文地质条件、煤层位置关系和带压开采基础上,以东四采区10-409工作面为背景,进行了10#煤层底板采动破坏深度试验和开采过程底板破坏数值模拟研究,结果表明:模拟结果8.7 m与理论9m相接近,同时研究分析了东四采区构造对带底板破坏特征和最小临界突水系数,并提出了防治措施,为相似条件下工作面底板承压水上安...  相似文献   

8.
为进行采动影响下煤层底板变形破坏规律的研究,建立底板破坏深度求解力学模型,依据关键层理论和弹性理论得到沿走向底板内支承压力传播规律,再借助FLAC3D数值模拟软件分析3煤底板破坏特征,将倾斜煤层底板采动最大破坏深度按照相关理论进行核算。研究表明:底板浅位置的岩层,垂直应力等值线变化梯度相对较大,形状为半椭圆形;工作面回采重新达到平衡后,煤层底板的主要破坏形式为剪切破坏,且3煤工作面采动底板破坏最大破坏深度在21 m左右,底板巷道塑性区无明显增加;滑移线理论计算出采空区底板最大屈服破坏深度为10.68 m,而3号煤底板巷道与3号煤层相距约30 m,3号煤层的开采几乎不会对底板巷道造成影响,计算结果与仿真模拟结论相近。  相似文献   

9.
针对某矿煤层埋藏深,受底板承压水威胁严重的问题,确定底板采动破坏的深度是实现对其深部开采的关键和前提。根据该矿1305工作面的水文地质条件、煤层力学性质以及顶底板岩层结构和性质,运用FLAC3 D数值模拟方法研究煤矿深部开采过程中应力分布与塑性区分布特征,结合现场实测数据及煤层不同深度的超前段底板超声图像观测规律,得出该工作面采动煤层底板变形破坏的深度约为22 m。  相似文献   

10.
针对某矿煤层埋藏深,受底板承压水威胁严重的问题,确定底板采动破坏的深度是实现对其深部开采的关键和前提。根据该矿1305工作面的水文地质条件、煤层力学性质以及顶底板岩层结构和性质,运用FLAC3D数值模拟方法研究煤矿深部开采过程中应力分布与塑性区分布特征,结合现场实测数据及煤层不同深度的超前段底板超声图像观测规律,得出该工作面采动煤层底板变形破坏的深度约为22 m。  相似文献   

11.
《煤矿安全》2015,(11):196-199
通过承压水上煤层带压开采的相似模拟试验,分析采空区内底板隔水岩层垂直方向应力分布情况及变形特征,获得采空区内底板隔水岩层垂直方向位移值的变化规律。结果表明:老顶初次来压后,覆岩裂隙带高度逐渐增加,在采空区内底板岩层表面形成的压力也逐渐增加;当底板表面形成的压力较小而无法抑制住下伏承压水压力时,采空区内底板隔水岩层垂直方向位移值随工作面推进逐渐增大。因此,在评价承压水上安全开采时,需要考虑老顶初次来压后,煤层覆岩随工作面推进时的破坏特征。  相似文献   

12.
针对马堡矿地质构造复杂,主要岩溶含水层富水性强,下组煤距下伏奥灰很近,煤层开采面临着奥灰突水严重威胁的情况,运用数值模拟的方法,研究了工作面斜长对底板破坏规律与突水机理的影响,并对15号煤带压开采进行了安全性评价。研究结果表明:工作面斜长分别取160 m与110 m时开采15号煤产生的采动破坏带均会与承压水导升带贯通,隔水层丧失阻隔水性能进而导致底板突水,而工作面斜长为60 m时则不会发生底板突水。因此,可通过采取控制工作面斜长的方法提高带压开采的安全性。  相似文献   

13.
平煤矿区首次开采近全岩下保护层工作面用于解放其上部受瓦斯突出威胁的己组煤炭资源,近千米埋深开采近全岩层势必加大底板破坏深度,一旦扰动隔水层内L5弱富水性含水层形成寒灰水间接补给通道,影响工作面底板安全稳定。为此首先建立双层结构底板塑性滑移线场理论模型,推导出三种工况下双层底板最大破坏深度解析解;然后通过自主设计的孔隙水压力(弹簧)和地层有效应力(千斤顶)协同工作的相似模拟试验平台,基于数字图像相关技术模拟分析了采场顶底板变形形态和破坏特征;最后使用钻孔应变测量方法在平煤十二矿己15-31040近全岩工作面开展底板破裂发育形态现场监测。结果表明:采用双层结构底板塑性滑移线场理论计算出己15-31040近全岩工作面底板最大破坏深度为16.59 m;相似模拟试验揭示了底板破坏集中于开切眼及工作面两端,具有明显滞后破坏特征,最大破坏深度为17.8 m,工作面推进159.9 m进入充分开采后,底板应力逐渐恢复;现场实测结果显示底板岩体在工作面前方7.9 m出现压剪滑移破坏,工作面推过钻孔前后底板分别表现出压剪和拉剪破坏,底板最大破坏深度介于16.5~18 m。现场实测与理论计算和相似模拟试验结果...  相似文献   

14.
高承压水体上开采煤层底板潜在突水区动态演化数值模拟   总被引:1,自引:0,他引:1  
以底板受石炭系太原组灰岩高承压含水层威胁的淮北芦岭煤矿10煤为研究示范,利用有限元软件Plaxis 8.2建立能模拟承压水压力的10煤动态开采的数值模型,并考虑冒落矸石密度、变形参数与强度参数随时间的变化,分析底板采动破坏带与潜在突水区域的时空分布及其影响因素.研究结果表明:正常开采条件下,底板破坏深度随工作面推进距离的加大而增加,推进到一定距离后将达到极大值;随着煤层倾角的增大,由于冒落岩体的充填效应,开采冒落区导水裂隙提前闭合,潜在突水区域变小,并逐步集中于新近采空区;承压水压力越大,底板裂隙扩展并最终相互沟通的可能性越大,当承压水压力处于高值时,突水随时可能发生.  相似文献   

15.
为研究深部倾斜煤层底板破坏特征及破坏深度,以羊东煤矿8469工作面为研究对象,采用理论分析、数值模拟和现场实测相结合的方法,对煤层采后底板应力分布规律、塑性区发育特征及破坏深度进行了研究。通过数值模拟与理论分析可知:煤层开采后,作用在周围煤岩体上的支承压力产生不同的应力分区。沿煤层走向方向,应力呈对称性变化,形状近似马鞍状,在工作面两端处产生应力集中;沿煤层倾向方向,倾斜剪切力的存在使底板岩体由采动破坏转变成滑移破坏,塑性破坏区和应力变化大致呈勺型分布形态,最大应力集中区出现在工作面下侧。随着工作面向前推进,底板破坏范围相应增大,但推进255m后,破坏深度不再增加。现场实测表明,底板浅部岩层最早受到扰动,且受到的扰动程度最高。扰动范围随最大注水量的减少而增加,在底板下25m范围内的岩层受影响较小。由此可知,该工作面底板破坏深度为25.0~29.2m。  相似文献   

16.
针对深部带压开采工作面区域注浆治理后底板突水仍频发的难题,以邯邢矿区邢东矿深部带压开采为工程背景,通过现场调研和理论分析已突水工作面突水过程和开采地质条件,获得了邢东矿深部带压开采底板突水特征和影响因素,确定了邢东矿深部带压开采底板突水主控因素;应用弹塑性力学理论从动静载角度分析了不同来压步距对底板破坏深度和宽度影响规律,进而采用数值模拟研究不同来压步距下底板应力场和塑性区演化规律。研究结果表明:工作面顶板剧烈来压突水是邢东矿深部带压开采底板突水主要特征,顶板难以及时垮落是其关键诱因;随来压步距增大,底板应力集中带和卸荷应力拱逐渐向底板深部岩体传播扩展,顶板垮落易产生强烈来压动载效应,底板采动破坏深度和宽度增大,诱发隐伏导水构造活化及深部岩体破坏,贯通底板隐伏构造带等导水通道诱发底板突水。为此,提出了顶板水力压裂卸压以及底板微震监测、采动应力监测、围岩变形监测和承压水水位监测等多参量监测的防治技术。现场监测表明,试验工作面顶板水力压裂后周期来压步距缩短为9.53 m,相比邻近未压裂工作面减小了61.42%,来压动载系数、应力集中系数和围岩变形速度均较小,奥灰水位相对稳定,未形成底板突水通道,底板突水得到有效控制。  相似文献   

17.
初永强 《煤》2018,(3):13-15
煤矿开采中顶底板破坏带高度和深度对安全生产十分重要,尤其在承压水上开采时,底板的破坏带深度直接关系到工作面的开采可行性。为分析不同开采参数对底板破坏带深度的影响,采用数值模拟的方法对不同开采条件下的破坏带深度进行分析。结果表明:底板破坏带深度随着工作长度增加而增大;随着埋深的增加底板破坏带深度逐渐增加;底板破坏带深度与开采厚度成正比。  相似文献   

18.
基于断裂力学理论,将倾斜长壁工作面看作倾斜裂纹,采用断裂力学Ⅰ-Ⅱ复合型裂纹模型,计算出倾斜煤层工作面端部的底板应力分布,结合Mohr-Coulomb屈服准则,推导出平面应力状态下工作面上、下端部底板破坏深度以及破坏深度距端部的水平距离计算公式。理论分析表明,随着煤层埋深和工作面长度的增加,端部底板破坏深度呈线性增加;随着底板岩层平均抗压强度的增加,端部底板破坏深度呈反比例减小;随着煤层倾角的增大,端部底板破坏深度先增加、后减小,当拐点倾角为α时,底板破坏深度最大。用所推导的公式分析桃园矿1066工作面上、下端部最大破坏深度分别为15.77m和17.40m,现场微震监测工作面上、下端部最大破坏深度分别为12m和16m。结果表明,推导出的计算公式具有一定的适用性,可为带压开采提供参考。  相似文献   

19.
为深入研究底板渗流应力耦合破坏与递进导升协同突水演变规律,应用FLAC3D固液耦合模式模拟隐伏断层底板岩体的应力分布、变形破坏特征、递进导升渗流规律及裂隙扩展突水机制.数值模拟表明:在矿山压力和承压水压力影响下,随着工作面开挖,打破原来开挖面周围荷载平衡,底板岩层节理裂隙经历张开、闭合、扩展反复循环过程,当矿压破坏带和...  相似文献   

20.
为了研究膏体充填底板破坏规律的充填效应,以岱庄矿2153膏体充填工作面为工程背景,分别采用Midas/GTS-FLAC3D耦合模拟技术、滑移面理论力学分析和钻孔注水法实测方法对该工作面底板破坏深度进行了研究。结果表明,充填工作面底板破坏深度的数值模拟解约为3m,底板岩层破坏模式为以拉为主的拉剪破坏,充填开采煤层底板最大应力为初始应力的0.5倍;采用滑移面理论得到底板破坏深度的力学解析解为2.5~3.0 m,与钻孔注水实测平均值3 m基本吻合,充填开采底板破坏深度是垮落法开采的0.2倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号