首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
3.
4.
5.
An Escherichia coli-Shigella flexneri hybrid of intermediate virulence was studied to determine whether its shorter survival in host cells might be due to a metabolic defect. Investigation of its growth in minimal glucose medium showed that the hybrid, like its E. coli parent, had a longer lag phase and a slower growth rate than its virulent Shigella parent. Methionine was found to increase the growth rate of the hybrid. The Shigella parent of the hybrid can synthesize methionine normally, but the E. coli parent has a point mutation in its metA gene. Since it synthesizes enough methionine to grow slowly, it is postulated that the hybrid strain has a hybrid metA gene, that is, a gene composed partly of deoxyribonucleic acid (DNA) from E. coli, with the balance of the DNA from S. flexneri. Phage P1-mediated transduction, with the metA(-)E. coli parent as recipient and the Shigella parent as donor, yielded a few transductants that responded to methionine in the same way the hybrid did. Many more transductants of the hybrid type were produced when the hybrid strain was used as a donor. It is suggested that this poorly functioning gene acts synergistically with the hybrid strain's relaxed synthesis of ribonucleic acid to prevent its survival in the host.  相似文献   

6.
We showed previously that the human initiator tRNA gene, in the context of its own 5'- and 3'-flanking sequences, was not expressed in Saccharomyces cerevisiae. Here we show that switching its 5'-flanking sequence with that of a yeast arginine tRNA gene allows its functional expression in yeast cells. The human initiator tRNA coding sequence was either cloned downstream of the yeast arginine tRNA gene, with various lengths of intergenic spacer separating them, or linked directly to the 5'-flanking sequence of the yeast arginine tRNA coding sequence. The human initiator tRNA made in yeast cells can be aminoacylated with methionine, and it was clearly separated from the yeast initiator and elongator methionine tRNAs by RPC-5 column chromatography. It was also functional in yeast cells. Expression of the human initiator tRNA in transformants of a slow-growing mutant yeast strain, in which three of the four endogenous initiator tRNA genes had been inactivated by gene disruption, resulted in enhancement of the growth rate. The degree of growth rate enhancement correlated with the steady-state levels of human tRNA in the transformants. Besides providing a possible assay for in vivo function of mutant human initiator tRNAs, this work represents the only example of the functional expression of a vertebrate RNA polymerase III-transcribed gene in yeast cells.  相似文献   

7.
A yeast two-hybrid screen searching for chromosomally encoded proteins that interact with the Agrobacterium tumefaciens VirB8 protein was carried out. This screen identified an interaction candidate homologous to the partial sequence of a gene that had previously been identified in a transposon screen as a potential regulator of virG expression, chvD. In this report, the cloning of the entire chvD gene is described and the gene is sequenced and characterized. Insertion of a promoterless lacZ gene into the chvD locus greatly attenuated virulence and vir gene expression. Compared to that of the wild-type strain, growth of the chvD mutant was reduced in rich, but not minimal, medium. Expression of chvD, as monitored by expression of beta-galactosidase activity from the chvD-lacZ fusion, occurred in both rich and minimal media as well as under conditions that induce virulence gene expression. The ChvD protein is highly homologous to a family of ATP-binding cassette transporters involved in antibiotic export from bacteria and has two complete Walker box motifs. Molecular genetic analysis demonstrated that disruption of either Walker A box, singly, does not inactivate this protein's effect on virulence but that mutations in both Walker A boxes renders it incapable of complementing a chvD mutant strain. Constitutive expression of virG in the chvD mutant strain restored virulence, supporting the hypothesis that ChvD controls virulence through effects on virG expression.  相似文献   

8.
9.
10.
11.
12.
13.
Calnexin is a membrane-bound lectin chaperone in the endoplasmic reticulum (ER) that is part of a quality control system that promotes the accurate folding of glycoproteins entering the secretory pathway. We have previously shown that ER homeostasis is important for virulence of the human fungal pathogen Aspergillus fumigatus, but the contribution of calnexin has not been explored. Here, we determined the extent to which A. fumigatus relies on calnexin for growth under conditions of environmental stress and for virulence. The calnexin gene, clxA, was deleted from A. fumigatus and complemented by reconstitution with the wild type gene. Loss of clxA altered the proteolytic secretome of the fungus, but had no impact on growth rates in either minimal or complex media at 37°C. However, the ΔclxA mutant was growth impaired at temperatures above 42°C and was hypersensitive to acute ER stress caused by the reducing agent dithiothreitol. In contrast to wild type A. fumigatus, ΔclxA hyphae were unable to grow when transferred to starvation medium. In addition, depleting the medium of cations by chelation prevented ΔclxA from sustaining polarized hyphal growth, resulting in blunted hyphae with irregular morphology. Despite these abnormal stress responses, the ΔclxA mutant remained virulent in two immunologically distinct models of invasive aspergillosis. These findings demonstrate that calnexin functions are needed for growth under conditions of thermal, ER and nutrient stress, but are dispensable for surviving the stresses encountered in the host environment.  相似文献   

14.
The virulence factors of Burkholderia pseudomallei, the causative agent of melioidosis, are not fully understood. We have identified a gene with homology to the Salmonella typhimurium mouse virulence gene, mviN, a member of the mouse virulence factor family. Expression studies with an insertional mutant containing a lux operon demonstrated that the expression of the gene is influenced by free-iron availability in the media and by growth phase. The mutant displayed an increased LD50 value in the hamster infection model and a loss of the ability to invade human lung epithelial cells. The mutant has a slower growth rate than that of the wild type. Both defects were restored to various degrees when complemented in trans with the mviN gene. The mutant contains an insertion at 1229 bp of the 1548 bp gene, resulting in a truncated protein that is presumably responsible for the defects. Deletion mutants of the entire B. pseudomallei mviN gene were obtained only in the presence of the complement vector. This result and the inability of the complemented deletion mutant to lose the plasmid in the absence of antibiotic selection suggest that the gene is essential to B. pseudomallei.  相似文献   

15.
tRNA is structurally unique among nucleic acids in harboring an astonishing diversity of modified nucleosides. Two structural variants of the hypermodified nucleoside 7-deazaguanosine have been identified in tRNA: queuosine, which is found at the wobble position of the anticodon in bacterial and eukaryotic tRNA, and archaeosine, which is found at position 15 of the D-loop in archaeal tRNA. From homology searching of the Methanococcus jannaschii genome, a gene coding for an enzyme in the biosynthesis of archaeosine (tgt) was identified and cloned. The tgt gene was overexpressed in an Escherichia coli expression system, and the recombinant tRNA-guanine transglycosylase enzyme was purified and characterized. The enzyme catalyzes a transglycosylation reaction in which guanine is eliminated from position 15 of the tRNA and an archaeosine precursor (preQ(0)) is inserted. The enzyme is able to utilize both guanine and the 7-deazaguanine base preQ(0) as substrates, but not other 7-deazaguanine bases, and is able to modify tRNA from all three phylogenetic domains. The enzyme shows optimal activity at high temperature and acidic pH, consistent with the optimal growth conditions of M. jannaschii. The nature of the temperature dependence is consistent with a requirement for some degree of tRNA tertiary structure in order for recognition by the enzyme to occur.  相似文献   

16.
17.
The Ralstonia solanacearum hrpB-regulated gene lrpE (hpx5/brg24) encodes a PopC-like leucine-rich repeat (LRR) protein that carries 11 tandem LRR in the central region. Defects in the lrpE gene slightly reduced the virulence of R. solanacearum on host plants and changed the bacterial morphology leading to the formation of large aggregates in a minimal medium. The aggregation in the deltalrpE background required the presence of a functional Hrp type III secretion system. In wild-type R. solanacearum, Hrp pili disappeared from the bacterial surface at the end of the exponential growth phase, when the pili form into long bundles. However, even in the late growth phase, bundled Hrp pili were still observed on the cell surface of the deltalrpE mutant. Such bundles were entangled and anchored the mutant cells in the aggregates. In contrast to PopC, LrpE accumulated in bacterial cells and did not translocate into plant cells as an effector protein. The expression levels of hrp genes increased three- to fivefold in the deltalrpE background compared with those in the wild type. We propose that LrpE may negatively regulate the production of Hrp pili on the cell surface of R. solanacearum to disperse bacterial cells from aggregates. In turn, dispersal may contribute to the movement of the pathogen in the plant vascular system and, as a consequence, the pathogenicity of R. solanacearum.  相似文献   

18.
Shigella flexneri causes bacillary dysentery by invading epithelial cells of the colonic mucosa. We have characterized the icsB gene which is located on the virulence plasmid pWR100. After inactivation of icsB, the mutant strain remained invasive, but formed abnormally small plaques on HeLa cell monolayers, colonized only the peripheral cells of Caco-2 islets, and was unable to provoke a keratoconjunctivitis in guinea-pigs. Examination of infected HeLa cells showed that the icsB mutant was able to lyse the phagocytic vacuole and to form protrusions at the surface of infected cells, but, unlike the wild type, remained trapped in protrusions surrounded by two membranes. These results indicate that IcsB is involved in the lysis of the protrusions, a step necessary for intercellular spread.  相似文献   

19.
20.
Liu P  Wood D  Nester EW 《Journal of bacteriology》2005,187(17):6039-6045
The pckA gene, encoding phosphoenolpyruvate carboxykinase, catalyzes the reversible decarboxylation and phosphorylation of oxaloacetate to form phosphoenolpyruvate. Located on the circular chromosome of Agrobacterium, this locus is adjacent to the loci chvG and chvI, encoding a two-component regulatory system that has been shown to be important in virulence. Using a reporter gene fusion, studies showed that the pckA gene is induced by acidic pH but not by acetosyringone. This acid induction is regulated by the chvG-chvI regulatory system, which controls acid-inducible genes. A pckA mutant had no demonstrable PckA enzyme activity and grew on AB minimal medium with glucose but did not grow on the same medium with succinate as the sole carbon source and was more inhibited in its growth than the wild-type strain by an acidic environment. A pckA mutant was highly attenuated in tumor-inducing ability on tobacco leaf disks and was severely attenuated in vir gene expression. Although vir gene induction was completely restored when a constitutive virG gene was introduced into the mutant strain, virulence was only partially restored. These results suggest that avirulence may be due to a combination of the inhibition of this mutant in the acidic plant wound environment and the poor induction of the vir genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号