首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bifurcations of orbit-averaged dynamics are studied in a class of razor-thin discs with central black holes. The model used here consists of a perturbed harmonic oscillator Hamiltonian augmented with a GM r potential. Through a sequence of conformal and canonical transformations, we reduce the phase-space flows of the system to a set of non-linear differential equations on a sphere. Based on the critical points of the averaged system, we classify orbit families and reveal the existence of six types of periodic motions: circular , long - and short-axis elliptical , long - and short-axis radial and inclined radial orbits. Long-axis elliptical orbits and their surrounding tubes have significant features: whilst they keep stars away from the centre, they elongate in the same direction as the density profile. These properties are helpful in the construction of self-consistent equilibria.  相似文献   

2.
3.
Gravitational amplification of Poisson noise in stellar systems is important on large scales. For example, it increases the dipole noise power by roughly a factor of 6 and the quadrupole noise by 50 per cent for a King model profile. The dipole noise is amplified by a factor of 15 for the core-free Hernquist model. The predictions are computed by summing over the wakes caused by each star in the system — the dressed-particle formalism of Rostoker & Rosenbluth — and are demonstrated by N -body simulation.   This result implies that a collisionless N -body simulation is impossible; the fluctuation noise which causes relaxation is an intrinic part of self-gravity. In other words, eliminating two-body scattering at interparticle scales does not eliminate relaxation altogether.   Applied to dark matter haloes of disc galaxies, particle numbers of at least 106 will be necessary to suppress this noise at a level that does not dominate or significantly affect the disc response. Conversely, haloes are most likely far from phase-mixed equilibrium and the resulting noise spectrum may seed or excite observed structure such as warps, spiral arms and bars. For example, discreteness noise in the halo, similar to that caused by a population of 106-M⊙ black holes, can produce observable warping and possibly excite or seed other disc structure.  相似文献   

4.
In a previous paper, the complex-shift method has been applied to self-gravitating spherical systems, producing new analytical axisymmetric density–potential pairs. We now extend the treatment to the Miyamoto–Nagai disc and the Binney logarithmic halo, and we study the resulting axisymmetric and triaxial analytical density–potential pairs; we also show how to obtain the surface density of shifted systems from the complex shift of the surface density of the parent model. In particular, the systems obtained from Miyamoto–Nagai discs can be used to describe disc galaxies with a peanut-shaped bulge or with a central triaxial bar, depending on the direction of the shift vector. By using a constructive method that can be applied to generic axisymmetric systems, we finally show that the Miyamoto–Nagai and the Satoh discs, and the Binney logarithmic halo cannot be obtained from the complex shift of any spherical parent distribution. As a by-product of this study, we also found two new generating functions in closed form for even and odd Legendre polynomials, respectively.  相似文献   

5.
6.
Potential–density pair basis sets can be used for highly efficient N -body simulation codes, but they suffer from a lack of versatility, i.e. a basis set has to be constructed for each different class of stellar system. We present numerical techniques for generating a biorthonormal potential–density pair basis set that has a general specified pair as its lowest-order member. We go on to demonstrate how the set can be used to construct N -body equilibria, which we then evolve using an N -body code that calculates forces using the basis set.  相似文献   

7.
We study spherically symmetrical equilibrium states of collisionless stellar systems confined to a spherical box. These equilibrium states correspond to the statistics introduced by Lynden-Bell in his theory of 'violent relaxation', and are described by a Fermi–Dirac distribution function. We compute the corresponding equilibrium diagram and show that a global entropy maximum exists for any accessible control parameter. This equilibrium state shows a pronounced separation between a degenerate core and a halo. We therefore check that degeneracy is able to stop the gravitational collapse (of a collisionless system), and we propose a simple model for the 'core–halo' structure. We also discuss the relevance of our study for real galaxies or other astrophysical systems such as massive neutrinos.  相似文献   

8.
9.
10.
There is strong evidence for some kind of massive dark object in the centres of many galaxy bulges. The detection of flares from tidally disrupted stars could confirm that these objects are black holes (BHs). Here we present calculations of the stellar disruption rates in detailed dynamical models of real galaxies, taking into account the refilling of the loss cone of stars on disruptable orbits by two-body relaxation and tidal forces in non-spherical galaxies. The highest disruption rates (one star per 104 yr) occur in faint ( L ≲1010 L) galaxies, which have steep central density cusps. More luminous galaxies are less dense and have much longer relaxation times and more massive BHs. Dwarf stars in such galaxies are swallowed whole by the BH and hence do not emit flares; giant stars could produce flares as often as every 105 yr, although the rate depends sensitively on the shape of the stellar distribution function. We discuss the possibility of detecting disruption flares in current supernova searches. The total mass of stars consumed over the lifetime of the galaxy is of the order of 106 M, independent of galaxy luminosity; thus, disrupted stars may contribute significantly to the present BH mass in galaxies fainter than ∼109 L.  相似文献   

11.
We introduce a new class of 2D mass models, whose potentials are of Stäckel form in elliptic coordinates. Our model galaxies have two separate strong cusps that form double nuclei. The potential and surface density distributions are locally axisymmetric near the nuclei and become highly non-axisymmetric outside the nucleus. The surface density diverges toward the cuspy nuclei with the law     Our model is sustained by four general types of regular orbits: butterfly , nucleophilic banana , horseshoe and aligned loop orbits. Horseshoes and nucleophilic bananas support the existence of cuspy regions. Butterflies and aligned loops control the non-axisymmetric shape of outer regions. Without any need for central black holes, our distributed mass models resemble the nuclei of M31 and NGC 4486B. It is also shown that the self-gravity of the stellar disc can prevent the double nucleus to collapse.  相似文献   

12.
We use the weighted integral form of spherical Bessel functions and introduce a new analytical set of complete and biorthogonal potential–density basis functions. The potential and density functions of the new set have finite central values and they fall off, respectively, similar to   r −(1+ l )  and   r −(4+ l )  at large radii, where l is the latitudinal quantum number of spherical harmonics. The lowest order term associated with   l = 0  is the perfect sphere of de Zeeuw. Our basis functions are intrinsically suitable for the modelling of three-dimensional, soft-centred stellar systems and they complement the basis sets of Clutton-Brock, Hernquist & Ostriker and Zhao. We test the performance of our functions by expanding the density and potential profiles of some spherical and oblate galaxy models.  相似文献   

13.
14.
Galaxy spectra are a rich source of kinematical information since the shapes of the absorption lines reflect the movement of stars along the line-of-sight. We present a technique with which to build directly a dynamical model for a galaxy by fitting model spectra, calculated from a dynamical model, to the observed galaxy spectra. Using synthetic spectra from a known galaxy model we demonstrate that this technique indeed recovers the essential dynamical characteristics of the galaxy model. Moreover, the method allows a statistically meaningful error analysis on the resulting dynamical quantities.  相似文献   

15.
Orbit classification in arbitrary 2D and 3D potentials   总被引:1,自引:0,他引:1  
A method of classifying generic orbits in arbitrary 2D and 3D potentials is presented. It is based on the concept of spectral dynamics introduced by Binney &38; Spergel that uses the Fourier transform of the time series of each coordinate. The method is tested using a number of potentials previously studied in the literature and is shown to distinguish correctly between regular and irregular orbits, to identify the various families of regular orbits (boxes, loops, tubes, boxlets, etc.), and to recognize the second-rank resonances that bifurcate from them. The method returns the position of the potential centre and, for 2D potentials, the orientation of the principal axes as well, should this be unknown. A further advantage of the method is that it has been encoded in a FORTRAN program that does not require user intervention, except for 'fine tuning' of search parameters that define the numerical limits of the code. The automatic character makes the program suitable for classifying large numbers of orbits.  相似文献   

16.
The stability of the dynamical trajectories of softened spherical gravitational systems is examined, both in the case of the full N -body problem and that of trajectories moving in the gravitational field of non-interacting background particles. In the latter case, for   N 10 000  , some trajectories, even if unstable, had exceedingly long diffusion times, which correlated with the characteristic e-folding time-scale of the instability. For trajectories of   N ≈100 000  systems this time-scale could be arbitrarily large – and thus appear to correspond to regular orbits. For centrally concentrated systems, low angular momentum trajectories were found to be systematically more unstable. This phenomenon is analogous to the well-known case of trajectories in generic centrally concentrated non-spherical smooth systems, where eccentric trajectories are found to be chaotic. The exponentiation times also correlate with the conservation of the angular momenta along the trajectories. For N up to a few hundred, the instability time-scales of N -body systems and their variation with particle number are similar to those of the most chaotic trajectories in inhomogeneous non-interacting systems. For larger N (up to a few thousand) the values of the these time-scales were found to saturate, increasing significantly more slowly with N . We attribute this to collective effects in the fully self-gravitating problem, which are apparent in the time variations of the time-dependent Liapunov exponents. The results presented here go some way towards resolving the long-standing apparent paradoxes concerning the local instability of trajectories. This now appears to be a manifestation of mechanisms driving evolution in gravitational systems and their interactions – and may thus be a useful diagnostic of such processes.  相似文献   

17.
We show how the complex-shift method developed by Appell to study the gravitational field of a point mass (and used in electrodynamics by, among others, Newman, Carter, Lynden-Bell, and Kaiser to determine some remarkable properties of the electromagnetic field of rotating charged configurations) can be extended to obtain new and explicit density–potential pairs for self-gravitating systems departing significantly from spherical symmetry. The rotational properties of two axisymmetric baroclinic gaseous configurations derived with the proposed method are illustrated.  相似文献   

18.
This paper discusses the possibility of constructing time-independent solutions to the collisionless Boltzmann equation which depend on quantities other than global isolating integrals such as energy and angular momentum. The key point is that, at least in principle, a self-consistent equilibrium can be constructed from any set of time-independent phase-space building blocks which, when combined, generate the mass distribution associated with an assumed time-independent potential. This approach provides a way to justify Schwarzschild's method for the numerical construction of self-consistent equilibria with arbitrary time-independent potentials, generalizing thereby an approach developed by Vandervoort for integrable potentials. As a simple illustration, Schwarzschild's method is reformulated to allow for a straightforward computation of equilibria which depend only on one or two global integrals and no other quantities, as is reasonable, for example, for modelling axisymmetric configurations characterized by a non-integrable potential.  相似文献   

19.
20.
We discuss the problem of using stellar kinematics of early-type galaxies to constrain the orbital anisotropies and radial mass profiles of galaxies. We demonstrate that compressing the light distribution of a galaxy along the line of sight produces approximately the same signature in the line-of-sight velocity profiles as radial anisotropy. In particular, fitting spherically symmetric dynamical models to apparently round, isotropic face-on flattened galaxies leads to a spurious bias towards radial orbits in the models, especially if the galaxy has a weak face-on stellar disc. Such face-on stellar discs could plausibly be the cause of the radial anisotropy found in spherical models of intermediate luminosity ellipticals such as NGC 2434, 3379 and 6703.
In the light of this result, we use simple dynamical models to constrain the outer mass profiles of a sample of 18 round, early-type galaxies. The galaxies follow a Tully–Fisher relation parallel to that for spiral galaxies, but fainter by at least 0.8 mag ( I -band) for a given mass. The most luminous galaxies show clear evidence for the presence of a massive dark halo, but the case for dark haloes in fainter galaxies is more ambiguous. We discuss the observations that would be required to resolve this ambiguity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号