首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
鉴于直接计算矩阵特征值的工作量很大,因此在实问题中,我们有时得借助于对这些特征值的某种估计。但通常基于Gerschgorin定理的估计方法往往不能对各特征值给出足够精确的界。本文则利用半正定矩阵伴随选主元的LDL~T分解提出一种估计实对称矩阵特征值的方法,所耗费的计算量是有限的,但在大多数情况下估计的精度可以得到很大的改进。本方法特别适用于半正定矩阵非零小特征值的估计,从而可用于在计算机上确定具体数值矩阵的秩。  相似文献   

2.
实对称带状矩阵逆特征值问题   总被引:5,自引:0,他引:5  
研究了一类实对称带状矩阵逆特征值问题:给定三个互异实数λ,μ和v及三个非零实向量x,y和z,分别构造实对称五对角矩阵T和实对称九对角矩阵A,使其都具有特征对(λ,x),(μ,y)和(v,z).给出了此类问题的两种提法,研究了问题的可解性以及存在惟一解的充分必要条件,最后给出了数值算法和数值例子.  相似文献   

3.
实对称矩阵广义特征值反问题   总被引:10,自引:0,他引:10  
本文研究如下实对称矩阵广义特征值反问题: 问题IGEP,给定X∈R~(n×m),1=diag(λ_II_k_I,…,λ_pI_k_p)∈R~(n×m),并且λ_I,…,λ_p互异,sum from i=1 to p(k_i=m,求K,M∈SR~(n×n),或K∈SR~(n×n),M∈SR_0~(n×m),或K,M∈SR_0~(n×n),或K∈SR~(n×n),M∈SR_+~(n×n),或K∈SR_0~(n×n),M∈SR_+~(n×n),或K,M∈SR_+~(n×m), (Ⅰ)使得 KX=MXA, (Ⅱ)使得 X~TMX=I_m,KX=MXA,其中SR~(n×n)={A∈R~(n×n)|A~T=A},SR_0~(n×n)={A∈SR~(n×n)|X~TAX≥0,X∈R~n},SR_+~(n×n)={A∈SR~(n×n)|X~TAX>0,X∈R~n,X≠0}. 利用矩阵X的奇异值分解和正交三角分解,我们给出了上述问题的解的表达式.  相似文献   

4.
戴华 《计算数学》1988,10(1):107-111
用R~(n×m)表示所有n×m实矩阵的集合;OR~(n×n)表示所有n×n正交矩阵的集合;S_(n,r)表示所有带宽为2r+1的n阶实对称矩阵的集合;||·||_F表示矩阵的Frobenius范数,||·||表示向量的Euclid范数.任取A∈R~(n×m),满足AA~-A=A 的A~-∈R~(m×n)叫做A的内逆,满足AA_l~-A=A和(AA_l~-)~T=AA_l~-的A_l~-∈R~(m×n)叫做A的最小二乘广义逆,  相似文献   

5.
利用矩阵的奇异值分解及广义逆,给出了矩阵约束下矩阵反问题AX=B有实对称解的充分必要条件及其通解的表达式.此外,给出了在矩阵方程的解集合中与给定矩阵的最佳逼近解的表达式.  相似文献   

6.
实对称矩阵的两类逆特征值问题   总被引:84,自引:11,他引:84  
孙继广 《计算数学》1988,10(3):282-290
§gi.两类逆特征值问题先说明一些记号.R~(m×n)是所有m×n实矩阵的全体,R~n=R~(n×1),R=R~1;SR~(n×n)是 所有n×n实对称矩阵的全体;OR~(n×n)是所有n×n实正交矩阵的全体;I~((n))是n阶单位矩阵;A~T是矩阵A的转置;A>0表示A是正定的实对称矩阵.?(A)是矩阵A的列空间;A~+是矩阵A的Moore-Penrose广义逆;P_A=AA~+表示到?(A)的正交投影.λ(A)是A的特征值的全体;λ(K,M)是广义特征值问题K_x=λM_x的特征值的  相似文献   

7.
对称双边对角矩阵特征值问题的计算   总被引:1,自引:0,他引:1  
1 引 言 大型稀疏矩阵在工程上有广泛的应用.例如,结构工程的有限元分析、电力系统的分析、流体力学及图像数据压缩等应用中常遇到求大型稀疏矩阵的特征值问题.因而矩阵特征值计算问题成为数值代数领域长期关注的问题,如[6][7].最近M.Gu与S.C.Eisenstat  相似文献   

8.
(0,1)实对称矩阵特征值的图论意义   总被引:1,自引:0,他引:1  
A为元素只取 0 ,1且主对角线元素均为 0的 n阶实对称方阵 ,n维列向量 J=( 1 ,1 ,1 ,… ,1 ) T ,且 AJ=( d1,d2 ,d3,… ,dn) T。若 λi 是 A的特征值 ,试证明 :∑ni=1λ2i =∑ni=1di ( 0 )  这是一道典型的线性代数中关于实对称矩阵特征值方面的问题。对它的求解如下 :设 n维非零向量 x是 A的对应于特征值λi 的特征向量 ,则有 Ax=λix.两边同时左乘 A,得A2 x =A(λix) =λi( Ax) =λ2ix ( 1 )而上式说明 λ2i 即方阵 A2 的特征值。由 [1 ],对任一 n阶方阵 A=[aij]n× n,若 λi 是 A的特征值 ,则有 ∑ni=1λi=tr( A) =∑ni=1aii 。…  相似文献   

9.
在实Schur分解的基础上,构造一新特征量表示正规矩阵特征值的虚部最大值,同时表示了所有实部.  相似文献   

10.
实对称带状矩阵特征值反问题的拟Lanczos方法   总被引:2,自引:0,他引:2  
  相似文献   

11.
对称正交对称矩阵逆特征值问题   总被引:27,自引:0,他引:27  
Let P∈ Rn×n such that PT = P, P-1 = PT.A∈Rn×n is termed symmetric orthogonal symmetric matrix ifAT = A, (PA)T = PA.We denote the set of all n × n symmetric orthogonal symmetric matrices byThis paper discuss the following two problems:Problem I. Given X ∈ Rn×m, A = diag(λ1,λ 2, ... ,λ m). Find A SRnxnP such thatAX =XAProblem II. Given A ∈ Rnδn. Find A SE such thatwhere SE is the solution set of Problem I, ||·|| is the Frobenius norm. In this paper, the sufficient and necessary conditions under which SE is nonempty are obtained. The general form of SE has been given. The expression of the solution A* of Problem II is presented. We have proved that some results of Reference [3] are the special cases of this paper.  相似文献   

12.
对称矩阵的两特征值问题   总被引:3,自引:1,他引:2  
彭文华 《大学数学》2004,20(3):59-60
介绍了对称矩阵的两特征值问题,并给出了计算公式.  相似文献   

13.
关于对称矩阵特征值的估计   总被引:2,自引:0,他引:2  
  相似文献   

14.
实对称矩阵的特征值问题,无论是低阶稠密矩阵的全部特征值问题,或高阶稀疏矩阵的部分特征值问题,都已有许多有效的计算方法,迄今最重要的一些成果已总结在[5]中。本文利用规范矩阵的一些重要性质将对于Hermite矩阵(特别是对弥矩阵)特征值问题的一些有效算法推广到规范矩阵的特征值问题,由于对复规范阵的推广是简单的,而且实际上常遇到的是实矩阵(这时常要求只用实运算),因此我们着重讨论实规范矩阵的特征值问题。  相似文献   

15.
本文将实对称矩阵特征值的交错定理推广到实对称区间矩阵,给出了实对称区间矩阵特征值确界的交错定理,并应用该定理构造了估计实对称三对角区间矩阵特征值界的算法.文中数值例子表明,本文所给算法与一些现有算法相比在使用范围、计算精度和计算量等方面都具有一定的优越性.  相似文献   

16.
1引言与符号说明对m×n矩阵A,下列矩阵方程:(1)AXA=A,(2)XAX=x,(3)(AX)~T=AX,(4)(XA)~T=XA称为Penrose方程.如果X满足上述方程(i)(j),…(k),则称X为(ij…k)逆,其全体记为A(ij…k).(1234)逆常记为A~ .所有这种矩阵叫广义逆(矩阵)或Moore- Penrose型逆(矩阵).广义逆矩阵在许多数学领域有广泛应用.它在解矩阵方程中的作用  相似文献   

17.
实对称矩阵和与差的一些特征值与F-范数不等式   总被引:1,自引:0,他引:1  
In this paper some characteristic value and F-norm inequalities of matrix sum and matrix difference are studied the results are extension of HoffmanWielandt theorem.  相似文献   

18.
一类对称矩阵的逆特征值问题   总被引:26,自引:1,他引:26  
  相似文献   

19.
令ζm,n表示所有的不可约m×n二部竞赛矩阵,M∈ζm,n和实数k≠0,本文主要获得了下述结论:首先研究k是M的特征值时k的几何重数,然后研究k是M的特征值的一些充要条件,最后讨论k是M的特征值时M的性质.  相似文献   

20.
1 引 言 本文研究了广义特征值问题 Ax=λBx (1)的并行计算。其中,A,B均为半带宽为r的n阶实对称带状矩阵且其中之一是正定的.本文总假设B是正定的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号