首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We discuss one-dimensional Dirac oscillator, by using the concept doubly special relativity. We calculate the energy spectrum by using the concept doubly special relativity. Then, we derive another representation that the coordinate operator remains unchanged at the high energy while the momentum operator is deformed at the high energy so that it may be bounded from the above. Actually, we study the Dirac oscillator by using of the generalized uncertainty principle version and the concept doubly special relativity.  相似文献   

2.
It is shown that in gravitational theories with torsion one is led to commutation rules corresponding to Landau-Peierls type uncertainty relations.  相似文献   

3.
Our recently proposed inertial transformations of the space and time variables based on absolute simultaneity imply the existence of a single isotropic inertial reference system (“privileged system”). We show, however, that aresynchronization of clocks in all inertial systems is possible leading to a different, arbitrarily chosen,isotropic “privileged” system. Such a resynchronization does not modify any one of the empirical consequences of the theory,which is thus compatible with a formulation of the relativity principle weaker than adopted in Einstein’s theory of special relativity.  相似文献   

4.
In a recent article [1] M.A. Oliver argues there is a conflict between Einstein's Special Theory of Relativity (STR) and Cosmology. In ascertaining this conflict (see below), Oliver finds allies in Bergmann [2] and Bondi [3]. To resolve this conflict, he proposes to restore the classical (mechanical) concepts of space and time [1, p.666] and an absolute rest-frame. I shall devote a few words (1) to the Principle of Relativity and (2) to the notion of cosmic time in cosmology; this enables me (3) to argue that the alleged conflict between STR and Cosmology is based on a misunderstanding of the Principle of Relativity. (4) Finally I take a critical look at Oliver's allies.  相似文献   

5.
The generalized uncertainty principle of string theory is derived in the frameworkof quantum geometry by taking into account the existence of an upper limit onthe acceleration of massive particles.  相似文献   

6.
The uncertainty principle lies at the heart of quantum physics, and is widely thought of as a fundamental limit of the measurement precision of incompatible observables. Here it is shown that the traditional uncertainty relation in fact belongs to the leading order approximation of a generalized uncertainty relation. That is, the leading order linear dependence of observables gives the Heisenberg type of uncertainty relations, while higher order nonlinear dependence may reveal more different and interesting correlation properties. Applications of the generalized uncertainty relation and the high order nonlinear dependence between observables in quantum information science are also discussed.  相似文献   

7.
International Journal of Theoretical Physics - Recently Chung and Hassanabadi proposed a higher order general uncertainty principle (GUP?) that predicts a minimal length as well as possesses...  相似文献   

8.
I suggest that classical General Relativity in four spacetime dimensions incorporates a Principal of Maximal Tension and give arguments to show that the value of the maximal tension is . The relation of this principle to other, possibly deeper, maximal principles is discussed, in particular the relation to the tension in string theory. In that case it leads to a purely classical relation between G and the classical string coupling constant and the velocity of light c which does not involve Planck's constant.  相似文献   

9.
运动是物质存在的形式,物质运动包括一切的能量变化和物质变化,其主要的方式包括机械运动、量子运动和场的变化等等,而人们对物质运动的深入研究发现,客观地、科学地认识物质运动过程,就必须认识到物质运动学原理的相对性。  相似文献   

10.
It is shown that the customary covariant formulation of electrodynamics in General Relativity is incompatible with the Einstein Principle of Equivalence. This is demonstrated for the case of a resistanceless current-carrying wire in a static spherically symmetric gravitational field—where the Einstein Principle of Equivalence implies the existence, in the vicinity of the wire, of a non-zero component of the electric field parallel to the wire, whereas the covariant form of Maxwell's equations does not. An experiment, involving a superconducting current-carrying wire segment placed in the Earth's gravitational field, is suggested. Whether or not a component of electric field parallel to the wire, at a point in the wire's vicinity, would be detected would resolve the issue.  相似文献   

11.
The relation of the special and the general principle of relativity to the principle of covariance, the principle of equivalence and Mach's principle, is discussed. In particular, the connection between Lorentz covariance and the special principle of relativity is illustrated by giving Lorentz covariant formulations of laws that violate the special principle of relativity: Ohm's law and what we call Aristotle's first and second laws. An Aristotelian universe in which all motion is relative to absolute space is considered. The first law: a free particle is at rest. The second law: force is proportional to velocity. Ohm's law: the current density is proportional to the electrical field strength. Neither of these laws fulfills the principle of relativity. The examples illustrate, in the context of Lorentz covariance and special relativity, Kretschmann's critique of founding Einstein's general principle of relativity on the principle of general covariance. A modification of the principle of covariance is suggested, which may serve as a restricted criterium for a physical law to satisfy Einstein's general principle of relativity. Other objections that have been raised to the validity of Einstein's general principle of relativity are based upon the preferred state of inertial frames in the general, as well as in the special theory, the existence of tidal effects in true gravitational fields, doubts as to the validity of Mach's principle, whether electromagnetic phenomena obey the principle, and, finally, the anisotropy of the cosmic background radiation. These objections are reviewed and discussed.  相似文献   

12.
The implications of the general covariance principle for the establishment of a Hamiltonian variational formulation of classical General Relativity are addressed. The analysis is performed in the framework of the Einstein-Hilbert variational theory. Preliminarily, customary Lagrangian variational principles are reviewed, pointing out the existence of a novel variational formulation in which the class of variations remains unconstrained. As a second step, the conditions of validity of the non-manifestly covariant ADM variational theory are questioned. The main result concerns the proof of its intrinsic non-Hamiltonian character and the failure of this approach in providing a symplectic structure of space-time. In contrast, it is demonstrated that a solution reconciling the physical requirements of covariance and manifest covariance of variational theory with the existence of a classical Hamiltonian structure for the gravitational field can be reached in the framework of synchronous variational principles. Both path-integral and volume-integral realizations of the Hamilton variational principle are explicitly determined and the corresponding physical interpretations are pointed out.  相似文献   

13.
An analysis of some of the applications of Clifford space relativity to the physics behind the modified black hole entropy-area relations, rainbow metrics, generalized dispersion and minimal length stringy uncertainty relations is presented.  相似文献   

14.
In this article we consider linear operators satisfying a generalized commutation relation of a type of the Heisenberg-Lie algebra. It is proven that a generalized inequality of the Hardy’s uncertainty principle lemma follows. Its applications to time operators and abstract Dirac operators are also investigated.  相似文献   

15.
Madelung showed how the complex Schrödinger equation can be rewritten in terms of two real equations, one for the phase and one for the amplitude of the complex wave function, where both equations are not independent of each other, but coupled. Although these equations formally look like classical hydrodynamic equations, they contain all the information about the quantum system. Concerning the quantum mechanical uncertainties of position and momentum, however, this is not so obvious at first sight. We show how these uncertainties are related to the phase and amplitude of the wave function in position and momentum space and, particularly, that the contribution from the phase essentially depends on the position–momentum correlations. This will be illustrated explicitly using generalized coherent states as examples.  相似文献   

16.

In this paper we present a new type of extended uncertainty principle (EUP) of the form [X, P] = i(1 − q|X|) and show that it has the non-zero minimal momentum. For this EUP we discuss the classical mechanics in the curved space, deformed calculus, deformed quantum mechanics and Bohr-Sommerfeld quantization.

  相似文献   

17.
The Generalized Uncertainty Principle and Black Hole Remnants   总被引:1,自引:0,他引:1  
In the current standard viewpoint small black holes are believed to emit black body radiation at the Hawking temperature, at least until they approach Planck size, after which their fate is open to conjecture. A cogent argument against the existence of remnants is that, since no evident quantum number prevents it, black holes should radiate completely away to photons and other ordinary stable particles and vacuum, like any unstable quantum system. Here we argue the contrary, that the generalized uncertainty principle may prevent their total evaporation in exactly the same way that the uncertainty principle prevents the hydrogen atom from total collapse: the collapse is prevented, not by symmetry, but by dynamics, as a minimum size and mass are approached.  相似文献   

18.
Quantum mechanics is formulated as a geometric theory on a Hilbert manifold. Images of charts on the manifold are allowed to belong to arbitrary Hilbert spaces of functions including spaces of generalized functions. Tensor equations in this setting, also called functional tensor equations, describe families of functional equations on various Hilbert spaces of functions. The principle of functional relativity is introduced which states that quantum theory (QT) is indeed a functional tensor theory, i.e., it can be described by functional tensor equations. The main equations of QT are shown to be compatible with the principle of functional relativity. By accepting the principle as a hypothesis, we then explain the origin of physical dimensions, provide a geometric interpretation of Planck’s constant, and find a simple model of the two-slit experiment and the process of measurement.  相似文献   

19.
20.
A new uncertainty relation (UR) is obtained for a system of N identical pure entangled particles if we use symmetrized observables when deriving the inequality. This new expression can be written in a form where we identify a term which explicitly shows the quantum correlations among the particles that constitute the system. For the particular cases of two and three particles, making use of the Schwarz inequality, we obtain new lower bounds for the UR that are different from the standard one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号