首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, a simple and green method is used to fabricate magnet nanocomposite microspheres (cellulose/chitosan/Fe3O4) based on cellulose/chitosan microsphere via the interaction between metal ions with chitosan. The results of Fourier transform infrared spectra and X-ray diffraction indicated that the Fe3O4 nanoparticles were well-fixed in the network of cellulose/chitosan microsphere as a result of the chelation role between chitosan and metal ions. Moreover, the morphology of Fe3O4 nanoparticle can be adjusted by changing the chitosan concentration of cellulose/chitosan microsphere. Most important, the catalytic performance of the nanocomposite magnet microsphere was studied, and the magnet nanocomposite microspheres with face-centered cubic structure and less size of Fe3O4 nanoparticles have shown excellent catalytic performance. Based on their excellent catalytic properties, these magnet cellulose/chitosan/Fe3O4 microspheres have prospect applications in the field of biotechnology and environmental, and so on.  相似文献   

2.
Porous chitosan–tripolyphosphate beads, prepared by the ionotropic crosslinking and freeze‐drying, were used for the adsorption of Cu(II) ion from aqueous solution. Batch studies, investigating bead adsorption capacity and adsorption isotherm for the Cu(II) ion, indicated that the Cu(II) ion adsorption equilibrium correlated well with Langmuir isotherm model. The maximum capacity for the adsorption of Cu(II) ion onto porous chitosan–tripolyphosphate beads, deduced from the use of the Langmuir isotherm equation, was 208.3 mg/g. The kinetics data were analyzed by pseudo‐first, pseudo‐second order kinetic, and intraparticle diffusion models. The experimental data fitted the pseudo‐second order kinetic model well, indicating that chemical sorption is the rate‐limiting step. The negative Gibbs free energy of adsorption indicated a spontaneous adsorption, while the positive enthalpy change indicated an endothermic adsorption process. This study explored the adsorption of Cu(II) ion onto porous chitosan–tripolyphosphate beads, and used SEM/EDS, TGA, and XRD to examine the properties of adsorbent. The use of porous chitosan–tripolyphosphate beads to adsorb Cu(II) ion produced better and faster results than were obtained for nonporous chitosan–tripolyphosphate beads. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Poly(barbituric acid) functionalized magnetic nanoparticles with excellent adsorption behavior were facilely synthesized through one‐step chemical oxidation polymerization method by using sodium borohydride as the reducing agent. Structure, morphology, and magnetism of the products were thoroughly investigated by means of FTIR, FESEM, EDX, X‐ray photoelectron spectra, thermogravimetric analyzer–differential scanning calorimetry, and vibrating sample magnetometer. The products were of a sphere‐shaped nanostructure with the saturation magnetization value of 7.5 emu g?1, which make them reusable for adsorption application. Removal capability for heavy metal ions were systematically evaluated using Pd (II) and Cu (II) ions as the models. The maximum sorption capacities by applying the Langmuir equation were calculated to be 166.6 mg/g for Cu (II) and 142.8 mg/g for Pb (II). A recycle test revealed that the PBA‐MNPs have above 87.1% for Cu (II) and 82.69% for Pb (II) ion desorption efficiency after the three regeneration cycle process. All the above experimental results demonstrated that barbituric acid‐based material could be used as a possible adsorbent for the efficient removal of heavy metals from aqueous solution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40957.  相似文献   

4.
Chitosan/Spirulina bio‐blends (CSBB) in films form were developed to be an alternative/renewable biosorbent, able to remove anionic and cationic dyes from aqueous solutions. CSBB potential as biosorbent was investigated for cationic dye Methylene Blue (MB), and anionic dyes Tartrazine Yellow (TY) and Reactive Black 5 (RB5). Chitosan and Spirulina samples were obtained and characterized, and CSBB films were prepared with different chitosan/Spirulina ratios. The CSBB films characteristics, as, mechanical properties, thermal profile, crystallinity, functional groups, morphology, and biosorption potential were strongly dependent of chitosan/Spirulina ratio. CSBB films preserved its mechanical structures at pH from 4.0 to 8.0. The biosorption capacities were 120, 110, and 100 mg g?1 for RB5, TY, and MB, respectively. The increase of chitosan amount favored the TY and RB5 biosorption; however, the increase of Spirulina amount favored the MB biosorption. Thus, the CSBB in film form is a renewable biosorbent suitable to remove anionic and cationic dyes from aqueous solutions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44580.  相似文献   

5.
Pullulan/poly(N-vinylimidazole) (PNVI) hybrid cryogels were synthesized under free radical polymerization and chemical crosslinking conditions in an alkaline, aqueous solution of pullulan (PUL), N-vinylimidazole (NVI), ammonium persulfate and epicholorohydrin (ECH) at −18°C. PUL and PNVI cryogels alone were also synthesized under similar conditions. Optimum cryogel formation conditions were determined by considering product yields and gel fractions of the samples. The products were characterized by elemental analysis, FTIR-ATR spectrometry, Thermal gravimetric analysis, and scanning electron microscopy (SEM) analyses. It has been found that PUL/PNVI hybrid samples bear improved physicochemical properties compared to ECH crosslinked PUL and PNVI samples alone. They act as hydrogels in aqueous medium reaching equilibrium swelling capacity values of the order of 600%. Dried PUL/PNVI cryogels show higher thermal stability than the dried cryogels of the parent polymers and maintain their physical integrity over a prolonged time period. Macroporous morphology was revealed by SEM analysis. Having 54.2 mg/g maximum equilibrium adsorption capacity in 200 ppm methyl orange solution and maintaining 95% of its adsorption capacity at the end of seven consecutive adsorption/desorption cycles, PUL/PNVI cryogel proved to be an efficient and durable dye adsorbent using methyl orange as the model compound in aqueous solution.  相似文献   

6.
Heavy metal ions such as Cu2+ and Pb2+ impose a significant risk to the environment and human health due to their high toxicity and non‐degradable characteristics. Herein, Al(OH)3‐polyacrylamide chemically modified with dithiocarbamates (Al‐PAM‐DTCs) was synthesized using formaldehyde, diethylenetriamine, carbon disulfide, and sodium hydroxide for rapid and efficient removal of Cu2+ and Pb2+. The synthesized adsorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis, scanning electron microscopy–energy dispersive X‐ray spectroscopy analysis, and transmission electron microscope measurements. Al‐PAM‐DTCs showed rapid removal of Cu2+ (<30 min) and Pb2+ (<15 min) with high adsorption capacities of 416.959 mg/g and 892.505 mg/g for Cu2+ and Pb2+ respectively. Al‐PAM‐DTCs also had high capacities in removing suspended solids and metal ions simultaneously in turbid bauxite suspensions. FTIR, thermodynamic study, and elemental mapping were used to determine the adsorption mechanism. The rapid, convenient, and effective adsorption of Cu2+ and Pb2+ indicated that Al‐PAM‐DTCs has great potential for practical applications in purification of other heavy metal ions from aquatic systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45431.  相似文献   

7.
Fed‐batch fermentation was used for biomass and fungal chitosan production by Aspergillus terreus (BCRC 32068) grown in a potato dextrose agar medium. The polysaccharides were extracted by an alkali–acid treatment, and structural investigations by X‐ray diffraction, Fourier transform infrared analysis, and viscosity and thermal analysis were done. A high level of chitosan was extracted from A. terreus; this implied that it was feasible to produce chitosan from industrial waste mycelia. Fungal chitosan derived from A. terreus showed the highest adsorption capacity for Sn(II). The order of Sn(II) adsorption capacity for these chitosanaceous materials was Fungal chitosan > Chitin > Biomass. Fungal chitosan derived from A. terreus was well correlated with Langmuir's isotherm model. The maximum capacity for Sn(II) sorption deduced from the use of the Langmuir isotherm equation was 303 mg/g; this was significantly higher than that of A. terreus. Fungal chitosan is an easy and cost‐effective material for the abatement of pollution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40436.  相似文献   

8.
Environmental pollution by heavy metals is currently a problem of great concern for human health. In this context, this study aims to contribute with the synthesis and characterization of chitosan functionalized with three different ionic liquids (n-butylammonium acetate, sec-butylammonium acetate, and tert-butylammonium acetate) followed by its application in hexavalent chromium effluent treatment. The adsorbents synthesized (ChN, ChS, and ChT) were characterized by SEM, EDS, FTIR, BET, RDD, PSD, and XRD techniques. Afterward, the influences of temperature, contact time, and pH on the Cr(VI) adsorption process were evaluated. The solution with pH 3 displayed the highest adsorption capacities (107.31, 104.60, and 107.97 mg.g-1 for ChN, ChS, and ChT, respectively). The kinetic data were better adjusted to the Weber-Morris kinetic model with an ideal time of 2 h. Furthermore, the influence of temperature was evaluated using the Freundlich and Langmuir isotherms, with maximum capacities of 142.05 (ChN), 131.58 (ChS), and 146.63 mg.g-1 (ChT). The adsorbent displayed enhanced adsorption properties in comparison with raw chitosan by an intensification of the electrostatic interaction between amino groups and hexavalent chromium. Finally, the reusability was investigated, and significant results were observed (84.33 ± 4.87%) in the adsorption process after 4 cycles.  相似文献   

9.
Poly(lactic acid) (PLA)/barium ferrite (BaFe12O19) with different composition ratios was fabricated by magnetic composite filaments using an extrusion process for a 3D printer. The silane modified surface of BaFe12O19 was studied to observe the effect on the mechanical, morphology, thermal, and magnetic properties of magnetic composite filaments. The results showed that the silane treated surface BaFe12O19 not only enhanced the mechanical properties of magnetic composite filaments, but also improved adhesion and homogeneity between the BaFe12O19 filler and PLA matrix. Moreover, the thermal and magnetic properties of magnetic composite filaments were not obviously changed after adding silane treated surface BaFe12O19. The achievement of the magnetic composite filaments preparation with silane treated surface BaFe12O19 for the 3D printing process could become a guideline to develop and design other magnetic composites products in the near future.  相似文献   

10.
Polyurethane‐functionalized starch nanoparticles (PUFSNPs) have been synthesized by chemical modification of polyhydroxylated starch nanocrystals (SNC) with aliphatic and aromatic diisocyanates. The covalent attachment of the diisocyanates to the backbone of SNC for the formation of starch‐derived nanopolyurethane polymers was unambiguously determined by FTIR and NMR spectroscopy. PUFSNPs were entirely obtained from SNC with yields ranging from 41.5 to 86.0 wt % and their size distribution, size, porosity and morphology were determined by dynamic light scattering (DLS), high resolution transmission electron microscopy (HRTEM) and Brunauer–Emmett–Teller (BET) adsorption techniques. The size and surface area of the cyclic aliphatic‐based PUFSNP (NPU4) is 27 nm and 52.64 m2 g?1, respectively, indicating one of the potential and promising biodegradable materials for the adsorption of acid impurities and contaminants that are found in crude biodiesel. The acid content of the biodiesel is remarkably reduced by 32–39% with PUFSNPs while 7–18% with their corresponding bulk materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44463.  相似文献   

11.
Cassava xanthogenate and their derivatives, as adsorbents to remove Pb2+ from aqueous solution, are studied based upon orthogonal factorial design. The structural and thermal properties, adsorption performance as well as equilibrium‐kinetics are comprehensively investigated with multiple tools, such as Fourier transform infrared spectroscopy, thermal gravimetric analysis (TGA), and UV–visible spectrum technique. The influence of multiple parameters, including initial Pb2+ concentrations, compositions, pH values, and temperatures, on the adsorption performance is emphasized. The crosslinked cassava xanthogenate serves as an effective bio‐sorbent to remove Pb ions from aqueous solution, allowing regeneration in dilute acid solution. The findings in this study are beneficial for the development of adsorbents from cassava waste biomass and may contribute to environment recovery in “nature‐to‐nature” manner. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39780.  相似文献   

12.
Persimmon fallen leaves were employed to prepare a renewable and low‐cost biosorbent named as NPFL. Effects of initial pH, contact time, initial Pb(II) concentration, coexisting metal ions, and ionic strength on adsorption of Pb(II) from aqueous solution by NPFL were studied in detail. Enhanced removal capacity of NPFL toward Pb(II) was observed, and the maximum adsorption capacity was evaluated as 256 mg g?1 by Langmuir modeling calculation. The fast adsorption process and the well‐fitted kinetics data with pseudo‐second‐order model indicated that chemisorption is the main rate‐limiting step for the adsorption process. NPFL had superior adsorption selectivity for Pb(II) from aqueous solution with coexisting metal ions. Characterization of NPFL and adsorption mechanism (electrostatic attraction, ion exchange, and chelation) were performed using XRD, SEM‐EDS, FT‐IR, XPS, and TGA. The results suggested that NPFL could be utilized as a potential candidate for the preconcentration of Pb(II) recovery and its removal in practice. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43656.  相似文献   

13.
Thiol-ene polymerization has been pointed out as a promising technique to produce biobased polymers for biomedical applications due to its advantages, including mild conditions and rapid reaction rates without the formation of byproducts. Therefore, in this study different concentrations of magnetic nanoparticles (MNPs) were incorporated in poly(thioether-ester) (PTEE) nanoparticles by thiol-ene miniemulsion polymerization of biobased monomers to form both linear and branched cross-linked polymers. Loading efficiencies up to approximately 95% (thermogravimetric analysis) of the MNPs within the polymer matrix were obtained. In addition, the substitution of the dithiol 1,4-butanedithiol (64.2%) for the tetrathiol PTEMP (95.8%), increased the encapsulation efficiency by about 30%. Hybrid nanoparticles presented average mean diameters between 95 and260 nm with polydispersity index between 0.13 and 0.42 by DLS, negative zeta potentials around −45 mV and superparamagnetic behavior. The hyperthermia assays performed on breast cells (MDA-MB 231) have shown that the cell death was dependent on the exposure time to the AC magnetic field and the reduction in cell viability was approximately 35%. These results demonstrated the production of superparamagnetic PTEE nanoparticles via thiol-ene polymerization and highlight the promising application of these biobased materials for cancer treatment by hyperthermia.  相似文献   

14.
In this study, Chitosan/Al2O3/Fe3O4 core‐shell composite microsphere (CAMF) was used as an effective sorbent with high adsorption capacity for the removal of anionic azo dye model from aqueous solution. The obtained composite was characterized by XRD, SEM, EDX, and BET analysis. The results showed the high methyl orange (MO) adsorption in a wide pH range of 4–10 and the optimum adsorbent dosage was obtained 0.6 g L?1. It is indicated that the equilibrium data followed the Langmuir isotherm model and the adsorption kinetic was well fitted with pseudo‐second‐order kinetic model. Also, the adsorption kinetic was controlled by the film diffusion and intra‐particle diffusion, simultaneously. It is revealed that by increasing the particle size from <0.1 μm to ~0.4 μm, the adsorption capacity did not change, significantly. The adsorption capacity of MO on CAMF was predicted by multilayer perceptron (MLP) neural network at different initial MO concentration, in which the predictions of MLP model had very good agreement with experimental data. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43466.  相似文献   

15.
In this work, poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) nanocomposites containing functionalized graphene sheets (FGS) were prepared by means of high‐energy ball milling. The crystalline structure, oxygen barrier, mechanical and electrical properties, and biodegradability of the developed nanocomposites were analyzed and correlated with the amount of FGS incorporated and with their morphology, which was reported in a previous study. Addition of FGS into the PHBV matrix did not affect the crystal morphology of the material but led to somewhat enhanced crystallinity. The good dispersion and distribution of the nanofiller within the polymeric matrix, revealed in the first part of this study, was thought to be crucial for the mechanical reinforcing effect of FGS and also resulted in enhanced gas barrier properties at high relative humidity. Additionally, the conducting behavior of the nanocomposites, as interpreted by the percolation theory, displayed a very low percolation threshold set at ~0.3 vol % of FGS, while the materials exhibited an overall significantly enhanced conductivity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42217.  相似文献   

16.
This work has demonstrated that the novel chitosan derivative, synthesized by phase transition and grafting diethylenetriamine, has a great potential for the adsorption of acid dyes from aqueous solutions. Four acid dyes with different molecular sizes and structures were used to investigate the adsorption performance of diethylenetriamine‐modified chitosan beads (CTSN‐beads). Results indicated that the adsorption of dyes on CTSN‐beads was largely dependent on the pH value and controlled by the electrostatic attraction. In addition, the adsorption rate (AO10 > AO7 > AR18 > AG25) and adsorption capacities (AO7 > AR18 > AO10 > AG25) were directly related to the molecular size of the dye and the amount of the sulfonate groups on the dye molecules. The equilibrium and kinetic data fitted well with the Langmuir–Freundlich and pseudo‐second‐order model. Furthermore, thermodynamic parameters indicated that the adsorption processes occurred spontaneously and higher temperature made the adsorption easier. The reuse tests indicated that the CTSN‐beads can be recovered for multiple uses. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4090–4098, 2013  相似文献   

17.
Chitosan beads were cross‐linked with glutaraldehyde (GA) and epichlorohydrin (EP), respectively, at variable composition. The general features of the adsorptive and textural properties of the bead systems were characterized using p‐nitrophenolate (PNP) at pH 8.5. As well, a systematic adsorption study of phosphate dianion (phosphate ( ) species was carried out in aqueous solution at pH 8.5 and 295 K. The Sips isotherm model yielded adsorption parameters for the chitosan bead systems: (i) monolayer adsorption capacity (Qm) for PNP ranged from 0.30 to 0.52 mmol g?1 and (ii) Qm values for the bead systems with ranged from 22.4–52.1 mg g?1 for these conditions. GA cross‐linked beads reveal greater Qm values for PNP while EP cross‐linked beads showed greater Qm values for , in accordance with the surface chemistry and the materials design described herein. The EP cross‐linked beads show favorable adsorption–desorption properties and represents a promising tunable adsorbent system for the effective removal of phosphate dianion species in aqueous solution. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42949.  相似文献   

18.
1‐Carboxymethyl‐3‐methylimidazolium hydrochloride ([IMIM–COOH]Cl), a new ionic salt, is proposed as a green, promising solvent for dissolving chitosan. However, because of the optimal dosage of chitosan dissolved in [IMIM–COOH]Cl, a 12 wt % [IMIM–COOH]Cl aqueous solution was selected as an optimum solvent system for dissolving chitosan. The structures of the original and regenerated chitosan were characterized by Fourier transform infrared spectroscopy and X‐ray diffraction analysis. Scanning electron microscopy was used to visualize the morphological features of the reconstituted chitosan membranes. Meanwhile, the absorbance, tensile strength, and breaking elongation of the chitosan membranes were measured. The results reveal that 10–11 wt % was an optimal chitosan concentration for preparing membranes. Furthermore, the adsorption capacity for Cu(II) ion of the chitosan membranes was increased with the chitosan concentration decreased from 12 to 8 wt %. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41965.  相似文献   

19.
We have prepared a novel kind of magnetic nanoparticle with high adsorption capacity and good selectivity for Pb2+ ions by modifying the magnetic nanoparticles with polyvinyl alcohol (PVA) and thiourea. The resultant magnetic nanoparticles were used to adsorb Pb2+ ions from aqueous solution. The influence of the solution pH, the adsorption time, the adsorption temperature, coexisting ions, and the initial concentration of Pb2+ ions on the adsorption of Pb2+ ions were investigated. The results indicated that Pb2+ ions adsorption was an endothermic reaction, and adsorption equilibrium was achieved within 30 min. The optimal pH for the adsorption of Pb2+ ions was pH 5.5, and the maximum adsorption capacity of Pb2+ ions was found to be 220 mg/g. Moreover, the coexisting cations such as Ca2+, Co2+, and Ni2+ had little effect on adsorption of Pb2+ ions. The regeneration studies showed that thiourea functionalized PVA‐coated magnetic nanoparticles could be reused for the adsorption of Pb2+ ions from aqueous solutions over five cycles without remarkable change in the adsorption capacity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40777.  相似文献   

20.
The effect of freeze‐thaw pretreatment on the thermal drying process and physicochemical properties of chitosan was investigated in this study. Results showed that the freeze‐thaw treatment changed the form of chitosan paste and reduced 75.6–77.7% of the water content. The freeze‐thaw treatment decreased the drying time of chitosan from 16–19 h to 2.75–4 h and the dried product was loosely packed powder. After freeze‐thaw treatment, the molecular weight of chitosan was unchanged during the thermal drying. The heat‐induced browning effect of chitosan during drying was greatly alleviated by the pretreatment. Furthermore, the pretreatment increased the 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical‐scavenging activity of dried product by 40.4–59.8%. The molecular weight, color, and DPPH radical‐scavenging activity of the pretreated dried chitosan product were close to those of freeze‐dried product. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41017.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号