首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclodextrins are among the most remarkable macrocyclic molecules with significant theoretical and practical impacts in chemistry and biology. Cyclodextrins belong to the family of cage molecules due to their structure, which is composed of a hydrophobic cavity that can encapsulate other molecules. Indeed, the most characteristic feature of these compounds is their ability to form inclusion complexes with various molecules through host–guest interactions. This is at the origin of many applications. It is well known and widely reported in the literature that cyclodextrins and their derivatives have a wide variety of practical applications including pharmacy, medicine, foods, cosmetics, toiletries, catalysis, chromatography, biotechnology, nanotechnology, and textile industry. Cyclodextrins are also the object of numerous fundamental studies. In this review, we chose to highlight selected works on cyclodextrins published over the last 5 years by different research groups. The main objective is to summarize some of the recent developments related to the applications of cyclodextrins.  相似文献   

2.
Nanoparticles are now widely applied in products. The synthesis of nanomaterials using biological materials is an emerging field, notably for medical applications because biologically derived compounds can be safe. For instance, calcium phosphate is a natural biomineral that possesses an excellent biocompatibility due to its chemical similarity to human hard tissue such as bone and teeth. Here, we synthesized calcium phosphate nanoparticles by using bark extract of Spanish cherry (Mimusops elengi). Calcium phosphate nanoparticles showed an absorbance at 275 nm by UV–visible analysis and particle size of 25 nm by nanoparticle tracking and analysis. Fourier transform infrared spectroscopy revealed the presence of aromatic amines as a capping and reducing agent. Transmission electron microscopy showed the presence of polydispersed spherical nanoparticles with an average size of 50 nm. Measurements of zeta potential revealed the stability of the synthesized calcium phosphate nanoparticles. These particles demonstrated antibacterial activity against Streptococcus mutans, Staphylococcus aureus and Escherichia coli. We conclude that the synthesis of calcium phosphate nanoparticles by using a M. elengi is easy, eco-friendly and scalable.  相似文献   

3.
Mesoporous silicas such as MCM-41 and SBA-15 possess high surface areas, ordered nanopores, and excellent thermal stability, and have been often used as catalyst supports. Although mesoporous metal oxides have lower surface areas compared to mesoporous silicas, they generally have more diversified functionalities. Mesoporous metal oxides can be synthesized via a soft-templating or hard-templating approach, and these materials have recently found some applications in environmental catalysis, such as CO oxidation, N2O decomposition, and elimination of organic pollutants. In this review, we summarize the synthesis of mesoporous transition metal oxides using mesoporous silicas as hard templates, highlight the application of these materials in environmental catalysis, and furnish some prospects for future development.  相似文献   

4.
In recent years, an increasing amount of interest has been dedicated to the synthesis and application of ZIF-67-based materials due to their exceptionally high surface area, tunable porosity, and excellent thermal and chemical stabilities. This review summarizes the latest strategies of synthesizing ZIF-67-based materials by exploring the prominent examples. Then, the recent progress in the applications of ZIF-67-based materials in heterogeneous catalysis, including catalysis of the redox reactions, addition reactions, esterification reactions, Knoevenagel con-densations, and hydrogenation–dehydrogenation reactions, has been elaborately discussed. Finally, we end this work by shedding some light on the large-scale industrial production of ZIF-67-based materials and their applications in the future.  相似文献   

5.
Constructed wetlands (CWs) have been used effectively to remove nitrogen (N) and phosphorus (P) from non-point sources. Effluents of some CWs were, however, still with high N and P concentrations and remained to be pollution sources. Widely distributed paddy fields can be exploited to alleviate this concern. We were the first to investigate a combination system of three-level CWs with wetland paddy fields in a full scale to remove N and P from rural unregulated non-point sources. The removal efficiencies (REs) of CWs reached 57.3 % (37.4–75.1 %) for N and 76.3 % (62.0–98.4 %) for P. The CWs retained about 1,278 kg N ha?1 year?1 and 121 kg P ha?1 year?1. There was a notable seasonal change in REs of N and P, and the REs were different in different processing components of CWs. The removal rates of wetland paddy fields adopt “zero-drainage” water management according to local rainfall forecast and physiological water demand of crop growth reached 93.2 kg N ha?1 year?1 and 5.4 kg P ha?1 year?1. The rice season had higher potential in removing N and P than that in the wheat season. The whole combined system (0.56 ha CWs and 5.5 ha wetland paddy fields) removed 1,790 kg N year?1 and 151 kg P year?1, which were higher than those from CWs functioned alone. However, another 4.7-ha paddy fields were needed to fully remove the N and P in the effluents of CWs. The combination of CWs and paddy fields proved to be a more efficient nutrient removal system.  相似文献   

6.
Cytostatic drugs are a troublesome class of emerging pollutants in water owing to their potential effects on DNA. Here we studied the removal of 5-fluorouracil from water using the electro-Fenton process. Galvanostatic electrolyses were performed with an undivided laboratory-scale cell equipped with a boron-doped diamond anode and a carbon felt cathode. Results show that the fastest degradation and almost complete mineralization was obtained at a Fe2+ catalyst concentration of 0.2 mM. The absolute rate constant for oxidation of 5-fluorouracil by hydroxyl radicals was 1.52 × 109 M?1 s?1. Oxalic and acetic acids were initially formed as main short-chain aliphatic by-products, then were completely degraded. After 6 h the final solution mainly contained inorganic ions (NH4 +, NO3 ? and F?) and less than 10% of residual organic carbon. Hence, electro-Fenton constitutes an interesting alternative to degrade biorefractory drugs.  相似文献   

7.
The purpose of this research is to obtain optimal processing conditions for the adsorption of Remazol Brilliant Violet-5R (RBV-5R) dye onto activated carbon prepared from periwinkle shells (PSAC) by chemical activation with KOH using response surface methodology. Central composite design (CCD) was used to determine the effects of three preparation variables; CO2 activation temperature, CO2 activation time and KOH:char impregnation ratio (IR) on two responses; percentage RBV-5R dye removal and PSAC yield. Based on the CCD, two quadratic models were developed for percentage RBV-5R dye removal and PSAC yield, respectively. The most influential factor on each experimental design response was identified from the analysis of variance (ANOVA). The optimum conditions for the adsorption of RBV-5R dye onto PSAC were CO2 activation temperature of 811 °C, CO2 activation time of 1.70 h and IR of 3.0, resulting in 81.28% RBV-5R dye removal and 28.18% PSAC yield. PSAC prepared under optimum conditions was mesoporous with a Brunauer–Emmett–Teller surface area of 1894 m2·g?1, total pore volume of 1.107 cm3·g?1 and average pore diameter of 2.32 nm. The surface morphology and functional groups of the activated carbon were respectively determined from the scanning electron microscopy and Fourier transform infrared analysis.  相似文献   

8.
The study deals with the toxicological impact of cadmium nanoparticles (Cd NPs) on Bacillus subtilis as a model Gram-positive bacterium. Cadmium oxide (CdO) NPs (~22 nm) and cadmium sulfide (CdS) NPs (~3 nm) were used in this study. Both the NPs were found to inhibit the cell viability of B. subtilis when added to the culture at mid-log phase, the viable cell number declined with increasing concentration of Cd NPs. At mid-log phase, 15 mg L?1 CdO NPs inhibited growth by ~50%, whereas at 30 mg L?1 growth completely ceased. Under the same conditions, CdS NPs inhibited growth by ~50% at a concentration of 8 mg L?1, and at 20 mg L?1 growth was completely retarded. The cells changed their morphological features to a filamentous form with increasing Cd NPs exposure time, leading to associated with clumping. NPs treated cells when stained with 4′, 6-diamino-2-phenylindole, showed filamentous multinucleated bead structure, suggesting irregularities in cell division. Increasing intracellular oxidative stress due to Cd NPs exposure might be one of the reasons for the cell morphological changes and toxicity in B. subtilis.  相似文献   

9.
Carbon nanotubes (CNTs) have found numerous applications in various industries. Recently, adverse effects of these materials on human and animal cells in vitro have been reported. In the present study, the cytotoxicity of single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), and chrysotile asbestos in human lung epithelial cells has been studied using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The cells were exposed for 6 h and 24 h to between 0.97 and 1500 μg mL?1 of CNTs and chrysotile fibers prepared in two culture media containing 5% serum and 0.5% dimethylsulfoxide. Dose–response curves were obtained to determine the nonobservable adverse effect concentration and the half-maximum inhibitory concentration (IC50). The way of dispersion affects the cytotoxicity of CNTs. For MWCNT, the toxicological indexes were lower than for SWCNT. Chrysotile fibers were even less cytotoxic than CNTs. Therefore, workplace control measures are recommended as priority for occupational and environmental conditions.  相似文献   

10.
Hydroxyl-enriched materials are promising boron adsorbents. However, the use of these materials is hampered by issues of separation, recovery, and selectivity, notably due to the presence of interfering ions. Therefore, we synthesized here a cheap magnetic nanopowder, which was further functionalized with polyvinyl alcohol and glycidol to produce boron-selective adsorbents. We studied their selectivity and removal efficiency using batch and fixed-bed systems. Sorption was studied at both concentrated and trace amounts of boron. Results show that nanopowders have 5.3–6.5 nm pore sizes and 145–203 m2/g surface areas, using Brunauer–Emmett–Teller analysis. Polyvinyl alcohol-functionalized particles removed 93 % of boron at 5 mg/L at pH 7 in 30 min, whereas only 68 % of boron was removed by glycidol-functionalized particles. However, at higher boron concentration, of 50 mg/L, glycidol-functionalized particles showed higher adsorption affinity of 68.9 mg/g. We conclude that internal hydroxyl groups of polyvinyl alcohol-functionalized particles are less accessible at higher boron concentration. This is the first report on magnesium ferrites for boron recovery. The spent adsorbents were separated easily from the aqueous media by an external magnet and repeatedly used. Overall, our findings demonstrated that the hydroxyl-enriched magnetic nanopowders are a better alternative to the existing boron adsorbents regarding magnetic separation, reusability, and selectivity.  相似文献   

11.

The energy crisis and environmental pollution have recently fostered research on efficient methods such as environmental catalysis to produce biofuel and to clean water. Environmental catalysis refers to green catalysts used to breakdown pollutants or produce chemicals without generating undesirable by-products. For example, catalysts derived from waste or inexpensive materials are promising for the circular economy. Here we review environmental photocatalysis, biocatalysis, and electrocatalysis, with focus on catalyst synthesis, structure, and applications. Common catalysts include biomass-derived materials, metal–organic frameworks, non-noble metals nanoparticles, nanocomposites and enzymes. Structure characterization is done by Brunauer–Emmett–Teller isotherm, thermogravimetry, X-ray diffraction and photoelectron spectroscopy. We found that water pollutants can be degraded with an efficiency ranging from 71.7 to 100%, notably by heterogeneous Fenton catalysis. Photocatalysis produced dihydrogen (H2) with generation rate higher than 100 μmol h−1. Dihydrogen yields ranged from 27 to 88% by methane cracking. Biodiesel production reached 48.6 to 99%.

  相似文献   

12.
Nanotechnology can be defined as the use of nanomaterials for human benefit. Nanomaterials have unique properties due to their physical and chemical characteristics at the nanoscale (10?9 nm). Nowadays, nanotechnology is providing new products in all industrial sectors. This article reviews innovations in fields such as biomedical, diagnosis of diseases, therapeutics, agriculture and food, nanofertilizers, oil, gas, textile and cosmeceuticals and packaging. Recent trends of patents and scholarly publications in nanotechnology are also discussed.  相似文献   

13.
A cloud-point extraction (CPE) process using the nonionic surfactant, polyethylene glycol tert octylphenyl ether (Triton X-114) was employed for determination of Hg(II) ions in aqueous solutions. The method is based on the ion-pairing reaction of Hg(II) with Pyronin B (PyrB+) in the presence of excess iodide at pH 6.0 and extraction of the complex formed. The chemical variables affecting CPE efficiency were studied, and the analytical characteristics of the method were obtained. The calibration curves were linear in the range of 1–40 μg L?1 with the detection limits of 0.35 and 0.30 μg L?1 at 556 and 521 nm. Selectivity was also tested. The coefficients of variation of the method are 2.4% and 5.2% for five replicate measurements of mercury at levels of 10 and 25 μg L?1, respectively. The results obtained for two certified reference samples were in a good agreement with the certified values. The method was applied to the determination of total mercury in vegetable samples.  相似文献   

14.
In August 2000 high concentrations of the dominant herbivorous copepod Calanus hyperboreus were detected in the Arctic Fram Strait, west of Spitsbergen, 1 m above the seafloor at 2,290 m water depth. Individuals from that layer were sampled by a hyper-benthic net attached to the frame of an epi-benthic sledge. For comparison, the vertical distribution of C. hyperboreus in the water column was studied simultaneously by a multiple opening/closing net haul from 2,250 m depth to the surface. Maximum abundance was found close to the surface with 6.6 and 10.0 ind. m?3 at 0–50 m and 50–100 m depth, respectively. However, the major fraction of the population (>40%) occurred between 1,000 and 1,500 m depth. In the deepest layer (2,000–2,250 m) abundance measured 2.2 ind. m?3 and was twice as high as between 100 and 1,000 m depth. In comparison to individuals from surface waters, copepods from the hyper-benthic layer were torpid and did not react to mechanical stimuli. Stage CV copepodids and females from the deep sample contained 4–10% less lipid and showed significantly reduced respiration rates of 0.24 and 0.26 ml O2 h?1 g?1 dry mass (DM) as compared to surface samples (0.49 and 0.43 ml O2 h?1 g?1 DM). All these observations indicate that the hyper-benthic part of the population had already started a dormant overwintering phase at great depth. Based on the lipid deposits and energy demands, the potential maximum duration of the non-feeding dormant phase was estimated at 76–110 days for females and at 98–137 days for CV copepodids, depending on what indispensable minimum lipid content was assumed. In any case, the estimated times could not meet the necessary requirements for a starvation period of >6 months until the next phytoplankton bloom in the following spring. The ecological implications of these results are discussed with respect to the life cycle and eco-physiological adaptations of C. hyperboreus to its high-Arctic habitat.  相似文献   

15.
Phenylureas such as diuron are major herbicides used worldwide to control undesirable weeds. The environmental fate of phenylureas is of great interest because massive amounts of those herbicides are used. It is known that abiotic degradation of phenylureas in soil–water systems is catalyzed by humic acids. However, due to the chemical heterogeneity and large molecular sizes of humic acids, the specific effects of functional groups during catalysis have not been elucidated. Therefore, we studied here for the first time the kinetics of diuron degradation in the presence of low molecular weight humic acid-like compounds such as benzoic acid derivatives. Experiments were carried out at various pH and temperature, and monitored by high-performance liquid chromatography. Results show that all benzoic acid derivatives efficiently catalyzed diuron hydrolysis. The catalytic efficiency decreased in the following order: 0.88 M?1 day?1 for 3,4-dihydroxybenzoic acid, 0.72 M?1 day?1 for 4-hydroxybenzoic acid, 0.23 M?1 day?1 for phthalic acid, 0.11 M?1 day?1 for 2-hydroxybenzoic acid, and 0.09 M?1 day?1 for 2,4-dihydroxybenzoic acid. These differences in the catalytic efficiency are explained by steric hindrance affecting the accessibility of reactive sites and hence influencing the rate of the overall process. Steric factors are therefore expected to control the catalytic activity of humic acids because of the chemical similarities between humic acids and low molecular weight humic acid-like compound. Our results should help predict more accurately the fate and abiotic degradation mechanism of phenylureas in the environment.  相似文献   

16.
For monitoring and risk assessment, levels and distributions of Σ29 PCBs in paddy soil samples collected from Gwangyang (10 sites) and Ulsan (20 sites), heavily industrialized cities in Korea, were investigated using high-resolution gas chromatography/high-resolution mass spectrometry. Overall, total concentrations of Σ29 PCBs in Gwangyang (216.4–978.6 pg g?1 dw) and Ulsan (273.8–1824.1 pg g?1 dw) were higher than those (106.6–222.6 pg g?1 dw) in agricultural soil from Anseong in Korea. The TEQ (toxic equivalency) values from Gwangyang (0.06–0.40 ng TEQ kg?1 dw) and Ulsan (0.06–0.22 ng TEQ kg?1 dw) were higher than those (0.04–0.11 ng TEQ kg?1 dw) in Anseong but lower than the WHO threshold level (20 ng TEQ kg?1). However, one of the most toxic congeners, PCB 126, gave the highest concentration, possibly posing a risk to the biota. Seven indicator PCB congeners contributed to 50–80% of the total concentration of Σ29 PCBs, indicating the 7 PCBs can be used as valuable indicators for monitoring. The principal component analysis and cluster analysis for the homologue profiles of PCBs indicated that all the samples from both cities had the similar PCB contamination patterns, and the major sources of the PCB contamination were most likely from the usage of Aroclor 1254 than those of Aroclors 1242 and 1260. These PCB technical mixtures were possibly significantly used by various industries including iron and steel industries in Gwangyang and petrochemical and shipbuilding industries in Ulsan.  相似文献   

17.
The objective of this research was to investigate the effects of biosolids on the competitive sorption and lability of the sorbed Cd, Cu, Ni, Pb, and Zn in fluvial and calcareous soils. Competitive sorption isotherms were developed, and the lability of these metals was estimated by DTPA extraction following their sorption. Sorption of all metals was higher in the fluvial than in the calcareous soil. Sorption of Cu and Pb was stronger than that of Cd, Ni, and Zn in all soils. Biosolids application (2.5%) reduced the sorption of all metals especially Cu and Pb (28–43%) in both soils (especially the calcareous soil) at the lower added metal concentrations (50 and 100 mg L?1). However, it increased the sorption of all metals especially Pb and Cu in both soils (especially the calcareous soil; 15.5-fold for Cu) at the higher added concentrations (250 and 300 mg L?1). Nickel showed the highest lability followed by Cd, Zn, and Pb in both soils. Biosolids increased the lability of the sorbed Ni in the fluvial soils at all added concentrations and the lability of Cd, Pb, and Zn at 50 mg L?1, but decreased the lability of Cd, Pb, and Zn at 250 and 300 mg L?1 in both soils. We conclude that at low loading rate (e.g., 50 mg L?1) biosolids treatment might increase the lability and environmental risk of Cd, Cu, Pb, and Zn. However, at high loading rate (e.g., 300 mg L?1) biosolids may be used as an immobilizing agent for Cd, Cu, Pb, Zn and mobilizing agent for Ni.  相似文献   

18.
The use of a new sorbent developed from the husk of pomegranate, a famous fruit in Egypt, for the removal of toxic chromium from aqueous solution has been investigated. The batch experiment was conducted to determine the adsorption capacity of the pomegranate husk. The effects of initial metal concentration (25 and 50 mg l?1), pH, contact time, and sorbent concentration (2–6 g l?1) have been studied at room temperature. A strong dependence of the adsorption capacity on pH was observed, the capacity increased as the pH decreased, and the optimum pH value was pH 1.0. Adsorption equilibrium and kinetics were studied with different sorbent and metal concentrations. The adsorption process was fast, and equilibrium was reached within 3 h. The maximum removal was 100% for 25 mg l?1 of Cr6+ concentration on 5 g l?1 pomegranate husk concentration, and the maximum adsorption capacity was 10.59 mg g?1. The kinetic data were analysed using various kinetic models—pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion equations—and the equilibrium data were tested using several isotherm models, Langmuir, Freundlich, Tempkin, Dubinin–Radushkevich, and Generalized isotherm equations. The Elovich and pseudo-second-order equations provided the greatest accuracy for the kinetic data, while Langmuir and Generalized isotherm models were the closest fit for the equilibrium data. The activation energy of sorption has also been evaluated as 0.236 and 0.707 kJ mol?1 for 25 and 50 mg l?1 chromium concentration, respectively.  相似文献   

19.
Nanoparticles are not specifically targeted in conventional treatment schemes; consequently, typical wastewater treatment systems are ineffective for nanoparticles removal. With rapidly increasing concern over their health effects, improved understanding of nanoparticle transport and retention in porous media filters is critical because of its application in new wastewater treatment methods and for assessment of the fate of the discharged nanoparticles in soil. In this study, a unique and robust integrated method is developed and validated. Experimentally, this approach uses an on-line, real-time, and in situ method for measuring nanoparticle retention dynamics, eliminating the laborious and less accurate sampling and off-line analysis. The data analysis part is a process simulator which provides both kinetic properties of the retention process as well as the overall capacity and loading. This technique is validated by application to the transport and retention of TiO2 nanoparticles in two vastly different porous filtration media—activated carbon and sand. TiO2 retained concentrations ranged from 0.24 to 0.37 mg g?1 for activated carbon and 0.01–0.014 mg g?1 for sand. The integrated method presented here is useful for both comparison of the filtration effectiveness of various porous materials as well as for process optimization and scale-up for industrial applications.  相似文献   

20.
Discharges of nutrients, urea, dissolved organic matter and heavy metals by a sewage underwater pipeline are analysed in comparison to environmental conditions in a shallow coastal zone. Variable thermo-haline stratifications of the water column and currents in upper (2.62–34.97 cm s?1) and deeper (0.83–10.91 cm s?1) layers drive vertical diffusion and lateral transport of wastewaters. Loads of reactive phosphorus (0.13 tons d?1) and ammonium (1.62 tons d?1) by the pipeline are not negligible compared to the major river loads in the gulf. High concentrations of urea (≤11.51 μmol N dm?3) were found in the area of wastewater release. Ammonium uptake (6.14–534 nmol N dm?3 h?1) strongly exceeded nitrate uptake (0.19–138 nmol N dm?3 h?1), indicating that discharges of ammonium by the pipeline are actively assimilated by plankton community even at low levels of light. Distribution of Zn (≤27.7 ppb), Cu (≤25.6 ppb), Cd (≤0.80 ppb) and Pb (≤13.5 ppb) in the water column and the measurement of their complex-forming capacity in seawater did not indicate a persistent perturbation of the pelagic environment due to heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号