首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
采用平流层准地转-β通道近似下的波流相互作用模型,考虑大气行星波1和波2与流的相互作用,以平流层底部边界强迫波波1和波2的振幅作为参数,对该模型的分岔特性进行了研究.结果表明,系统具有稳态解支A,B,C,在某些参数范围内,多种稳态解同时存在.解支A对应于平流层冷冬状态,解支C对应于平流层增温状态.由于参数变化系统在稳态解A和C之间发生灾变是冬季平流层暴发性增温的原因.文中给出了二维参数空间中的分岔集,它表明了对流层顶的波动对平流层暴发性增温的控制作用,能很好地解释观测事实.  相似文献   

2.
使用一个全球原始方程半谱模式模拟了副热带急流强度和赤道准两年振荡(QBO)对平流层突然增温(SSW)的影响.结果指出:副热带急流强度对SSW有明显影响,副热带急流越强,SSW发展越快,极区最大增温区的高度越低;赤道QBO不同相位零风线的南北位移对SSW没有明显影响;QBO东风相位时副热带急流更强,而QBO西风相位时副热带急流较弱的观测事实,可能是大的中冬SSW更容易发生在QBO东风相位的主要原因.  相似文献   

3.
北半球平流层极涡崩溃过程的动力诊断分析   总被引:2,自引:0,他引:2  
魏科  陈文  黄荣辉 《中国科学D辑》2007,37(8):1110-1119
极地气候变化研究, 特别是极地在气候变化中作用的研究, 现在已经成为国际重要的研究领域, 是2007~2008年开展的“国际气候年”的核心研究问题. 针对以前研究中北半球平流层极涡崩溃时间的分歧, 首先确定了北半球平流层极涡在春季的崩溃时间, 并分析了在平流层极涡崩溃过程中的环流演变和波动活动特征. 分析表明北半球平流层极涡的平均崩溃时间为4月10日左右, 极涡崩溃时间的年际变化比较大, 最早和最晚的崩溃时间跨度达到两个月. 长期趋势表明20世纪90年代以来极涡持续时间增长. 对极涡崩溃异常早年和异常晚年的合成分析显示极涡崩溃过程在早晚年有不同的特征. 极涡崩溃早年, 平流层极涡在3月中旬只有一次快速的衰减过程, 这次过程主要与对流层上传的行星尺度波动异常有关; 而极涡崩溃异常晚年一般有两次衰减过程, 第一次衰减为一次快速过程, 对应有异常的波动活动, 和平流层的爆发性增温有关. 第二次过程则是一次慢过程, 此次过程不伴随异常的波动活动, 主要是非绝热过程起作用. 进一步对极涡崩溃异常早晚年大气低层环流异常的研究表明, 极涡崩溃早晚年低层温度场和位势高度场的异常上有明显不同, 这表明平流层极涡的崩溃伴随有上下层的动力耦合过程.  相似文献   

4.
副热带急流强度和赤道QBO对平流层突然增温的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
使用一个全球原始方程半谱模式模拟了副热带急流强度和赤道准两年振荡(QBO)对平流层突然增温(SSW)的影响.结果指出:副热带急流强度对SSW有明显影响,副热带急流越强,SSW发展越快,极区最大增温区的高度越低;赤道QBO不同相位零风线的南北位移对SSW没有明显影响;QBO东风相位时副热带急流更强,而QBO西风相位时副热带急流较弱的观测事实,可能是大的中冬SSW更容易发生在QBO东风相位的主要原因.  相似文献   

5.
极区平流层爆发性增温(SSW)是冬季半球最剧烈的大气扰动现象之一. SSW期间温度和风场的剧烈变化被认为是冬季半球中高层大气波动能量异常增强的主要原因.流星雷达是能够稳定连续探测中间层和低热层风场的重要地基探测设备.主要依托国家重大科技基础设施建设项目:“子午工程”,我国已建设了多个流星雷达观测台站,对中间层和低热层风场进行了长期稳定连续的监测,为揭示SSW期间中间层和低热层波动异常变化的物理机制提供了重要的观测资料.本文简述了近年来以我国“子午工程”流星雷达监测数据为核心,SSW期间中高层大气行星波的研究进展和成果;深入讨论了冬季半球中高层大气行星波发生异常变化的主要激发机制.随着“子午工程”二期十个流星雷达台站即将建成,本文对利用“子午工程”流星雷达监测台网进一步研究SSW期间中高层大气波动的变化特性进行了展望.  相似文献   

6.
本文利用热层-电离层-中间层能量和动力学卫星TIMED中宽带发射辐射计SABER观测的临边大气长波红外背景辐射数据来研究平流层增温效应,基于2012/2013年1—3月在20~100 km高度内的临边大气长波红外背景辐射数据,采用微扰方法,得到辐射扰动的时空分布.结果显示:大气长波红外背景辐射扰动数据能够更精细的展示平流层增温事件的发生,2013年平流层爆发性增温效应下最大辐射扰动幅度出现在40 km处可达160%,而利用温度扰动数据表征此事件的发生时最大温度扰动幅度出现在40 km处只有21%.针对2012年弱平流层增温效应,温度扰动幅度最大值出现在40 km处为16.4%,而辐射扰动幅度的最大值在40 km处可达91%.大气长波红外背景辐射的纬度分布体现出此事件发生于高纬度地区;其经度分布在20~50 km范围内呈现"w"形状;而50 km和80 km处大气长波红外背景辐射的极值区域范围随着事件的发生在高纬度地区都是先扩大随后缩小的过程.这表明高层大气临边红外辐射信号可用于研究平流层增温效应,尤其是对于温度弱起伏的小扰动事件.这对于掌握临近空间环境辐射形成机理及其变化特性亦具有重要意义.  相似文献   

7.
从描述波流相互作用的Holton-Dunkerton简称H-D)模型出发,应用延拓方法求解常微分方程的分岔问题,研究冬季平流层波动模型的分岔特性.给出了大气行星波2与流相互作用的底部边界强迫波、底部边界平均纬向风场、风切变等参数的分岔特性,同时给出了波1与流相互作用的底部边界强迫波的分岔特性的结果.  相似文献   

8.
本文利用热层-电离层-中间层能量和动力学卫星TIMED中宽带发射辐射计SABER观测的临边大气长波红外背景辐射数据来研究平流层增温效应,基于2012/2013年1—3月在20~100 km高度内的临边大气长波红外背景辐射数据,采用微扰方法,得到辐射扰动的时空分布.结果显示:大气长波红外背景辐射扰动数据能够更精细的展示平流层增温事件的发生,2013年平流层爆发性增温效应下最大辐射扰动幅度出现在40 km处可达160%,而利用温度扰动数据表征此事件的发生时最大温度扰动幅度出现在40 km处只有21%.针对2012年弱平流层增温效应,温度扰动幅度最大值出现在40 km处为16.4%,而辐射扰动幅度的最大值在40 km处可达91%.大气长波红外背景辐射的纬度分布体现出此事件发生于高纬度地区;其经度分布在20~50 km范围内呈现"w"形状;而50 km和80 km处大气长波红外背景辐射的极值区域范围随着事件的发生在高纬度地区都是先扩大随后缩小的过程.这表明高层大气临边红外辐射信号可用于研究平流层增温效应,尤其是对于温度弱起伏的小扰动事件.这对于掌握临近空间环境辐射形成机理及其变化特性亦具有重要意义.  相似文献   

9.
冬季平流层波动模型的分岔特性   总被引:1,自引:0,他引:1  
从描述波流相互作用的Holton-Dunkerton简称H-D)模型出发,应用延拓方法求解常微分方程的分岔问题,研究冬季平流层波动模型的分岔特性.给出了大气行星波2与流相互作用的底部边界强迫波、底部边界平均纬向风场、风切变等参数的分岔特性,同时给出了波1与流相互作用的底部边界强迫波的分岔特性的结果.  相似文献   

10.
从描述波流相互作用的Holton-Dunkerton简称H-D)模型出发,应用延拓方法求解常微分方程的分岔问题,研究冬季平流层波动模型的分岔特性.给出了大气行星波2与流相互作用的底部边界强迫波、底部边界平均纬向风场、风切变等参数的分岔特性,同时给出了波1与流相互作用的底部边界强迫波的分岔特性的结果.  相似文献   

11.
一、前言 中纬度地区电离层Es的成因与影响因素是一复杂的问题。远东地区Es既多又强,其它电离层现象也有一些特色,本文在文献[9]的基础上,从分析原始频高图入手,对远东地区夜间f0Es剧增与地磁K指数的关系作了统计研究,发现两者之间关系甚为密切,即地磁K指数的突然变化伴随着夜间Es层临界频率f0Es的剧烈增加。  相似文献   

12.
13.
在非均匀动压冲击期间和冲击突然停止,可引起等离子体边界层的局部瞬时重联过程.本文用二维可压缩MHD数值模拟方法研究了这两个过程.结果表明:当大尺度的均匀横向流从一侧边冲击边界层时,磁力线不弯曲,也不发生磁场重联,只是边界层被推着向下游运动;当局部的非均匀动压(特别是横向剪切流)冲击边界层时,被冲击的同向磁场区磁力线逐渐弯曲,在弯曲的反磁场区,出现磁岛,然后在电流片区发生磁场重联,且逐渐形成准稳态的“反K型”重联结构;当横向剪切流冲击停止后,边界层区变为非常不稳定的系统,产生多种流体涡旋和流型,并相应地产生多种类型的磁场重联结构,直到涡旋消失变为湍动状态时,磁场拓扑才逐渐恢复到未扰动状态。我们提出,外力作用的突然停止,可能是驱动重联的一种新机制,并对这种重联过程在磁层物理中可能的应用进行了讨论.  相似文献   

14.
谭子勋 《地球物理学报》1988,31(02):225-230
一、前言 中纬度地区电离层Es的成因与影响因素是一复杂的问题。远东地区Es既多又强,其它电离层现象也有一些特色,本文在文献[9]的基础上,从分析原始频高图入手,对远东地区夜间f0Es剧增与地磁K指数的关系作了统计研究,发现两者之间关系甚为密切,即地磁K指数的突然变化伴随着夜间Es层临界频率f0Es的剧烈增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号