首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
通过偶联剂处理和超声波振荡的方法使纳米CaCO3 粒子在ABS基体中均匀分散 ,制备出纳米CaCO3/ABS复合材料。利用冲击、拉伸、弯曲测试 ,熔融指数测定对复合材料的力学性能、加工流动性能进行研究。实验测试结果表明 ,纳米CaCO3 粒子起到了增强、增韧ABS的作用 ,同时提高了ABS的熔融指数  相似文献   

2.
球形微米级CaCO3的制备   总被引:2,自引:0,他引:2  
球形微米级CaCO3的制备赵振国丁丁(北京大学物理化学研究所,北京,100871)关键词CaCO3粉体;粉体制备中图分类号O648.15几何尺寸为微米级的微粉体开始出现表面效应,有的有实用价值。CaCO3微粉可作为纸张和塑料制品的添加剂。以高分子量低...  相似文献   

3.
姜梅  吴高峰 《甘肃科技》2007,23(10):53-55
目前对纳米材料比表面积的测定,多采用低温氮吸附法(简称BET法),准确度较高。但BET比表面积测量仪的价格昂贵,在测定比表面积时要用到N2、He等气体,且测量一个样品耗时1~2个小时,不适用于生产过程中中间物料的在线检测。文章主要介绍一种能快速测量比表面积进行在线检测方法——空气透气法测量纳米CaCO3的比表面。  相似文献   

4.
5.
研究了纳米聚丙烯酸酯微乳液改性纳米CaCO3在聚氯乙烯(PVC)基体中的分散性,以及添加了改性纳米CaCO3的PVC复合材料的力学性能.结果表明,改性后纳米CaCO3的表面性质由疏油性变为亲油性;改性后纳米CaCO3在PVC基体中均匀分散,并且与PVC基体结合良好;添加改性纳米CaCO3的PVC的冲击强度和拉伸强度明显优于添加未改性纳米CaCO3的PVC.  相似文献   

6.
AA改性纳米CaCO3/聚丙烯的结晶与熔融行为   总被引:3,自引:0,他引:3  
用双螺杆挤出机制备了丙烯酸(AA)改性纳米CaCO3,PP复合材料,通过DSC研究改性纳米CaCO3,PP中PP的结晶与熔融行为。结果表明纳米CaCO3对PP有异相成核作用,加入纳米CaCO3可使PP结晶温度提高,对熔融峰温影响不大,但能诱导β-PP晶的形成,熔融曲线上出现双峰。随从用量增加,PP的结晶温度和β-PP熔融峰的强度都提高。DCP存在下,能进一步提高了AA改性纳米CaCO3/PP的结晶温度。  相似文献   

7.
纳米CaCO3-PVC复合材料微观结构和力学性能研究   总被引:10,自引:0,他引:10  
将纳米CaCO3进行表面改性,制备了纳米CaCO3-PVC复合材料。用透射电子显微镜观察纳米CaCO3改性前后及纳米CaCO3-PVC复合材料的微观结构。结果表明,表面改性后纳米CaCO3在PVC基体中达到了纳米级的分散,对PVC复合材料有显著的增韧作用,复合材料的缺口冲击强度达到41.2kJ/m2。此外,还研究了纳米CaCO3-PVC的流变性能。  相似文献   

8.
纳米SiO和CaCO3对超高性能水泥基复合材料的影响   总被引:1,自引:0,他引:1  
系统研究了双掺纳米SiO2和纳米CaCO3对超高性能水泥基复合材料力学性能的影响规律,采用水化热分析、XRD、MIP和纳米压痕等多种微观分析测试手段对其水化进程及微结构进行了研究.结果表明,双掺纳米材料可进一步提升材料的各项力学性能,纳米CaCO3的最佳掺量为3%~5%.纳米SiO2的高反应活性促进了早期水泥水化的进程,与水泥水化产物Ca(OH)2反应产生C-S-H凝胶,纳米CaCO3主要起到了填充增强和晶核的作用,二者共同作用下,使得复合材料结构更为密实,孔隙率进一步降低,孔径得到细化,超高密度C-S-H凝胶大量生成,界面区得以强化,异常均匀致密的微观结构使得复合材料在宏观上体现出优异的力学性能.  相似文献   

9.
采用原位生成法制备CaCO3/聚丙烯酸酯纳米复合材料,通过XRD、FT-IR、UV-Vis、SEM和TG分析对材料的结构和性能进行表征.结果表明,当无机组分质量分数低于8%时,所得纳米复合材料是透明的,纳米CaCO3对紫外线有一定的屏蔽作用,并使复合材料有更好的热稳定性.  相似文献   

10.
真空内氧化法制备α—Al3O3/Cu复合材料   总被引:1,自引:0,他引:1  
对CuO-Al体系进行热力学和动力学分析的基础上,采用将CuO和Al粉末压块的方法加入到真空条件的Cu液中使其发生化学反应,生成Al2O3增强颗粒而获得复合材料,对复合材料进行了扫描电镜观察及X射线衍射分析,并测试了Al2O3含量复合材料电导率的影响。结果表明,内氧化法是制备Al2O3/Cu复合材料理想的方法;Al2O3/Cu复合材料用于高强度高导电领域时Al2O3含量应小于1.85wt%.  相似文献   

11.
为探究纳米CaCO_3和PVA(聚乙烯醇)纤维对混凝土的抗弯拉强度和抗弯拉弹性模量的影响,采用三分点加载试验方法测试混凝土的抗弯拉强度和抗弯拉弹性模量。研究结果表明:在纳米CaCO_3混凝土中掺入PVA纤维,可以显著提高混凝土抗弯拉强度,在试验PVA纤维掺量范围内,随着PVA纤维掺量的增加,混凝土的抗弯拉强度和抗弯拉弹性模量均呈现先增大后减小的趋势;当PVA纤维掺量为0.05%时,其抗弯拉强度和抗弯拉弹性模量均达到最大值;在混凝土中掺加适量的纳米CaCO_3(3%),随着纳米CaCO_3掺量的增加,混凝土的抗弯拉强度和抗弯拉弹性模量逐渐增加,当纳米CaCO_3掺量超过3%时,随着纳米CaCO_3掺量的增加,其抗弯拉强度和抗弯拉弹性模量逐渐减小。  相似文献   

12.
锐钛矿型TiO2/SiO2复合氧化物的制备   总被引:1,自引:1,他引:1  
以硅灰石为硅源、 硫酸钛为钛源, 在未添加任何表面活性剂的制备条件下得到较高比表面积的多孔锐钛矿型TiO2/SiO2复合氧化物.反应过程中生成微溶于水的CaSO4, 在复合物孔隙的形成中起重要作用. 利用XRD,TEM,N2吸附和脱附对复合物的微观结构和化学组成进行了表征.  相似文献   

13.
以管状木棉活性炭纤维(ACFs)为载体,四氯化锡与磷酸的混合溶液为浸渍溶液,采用浸渍和煅烧工艺制备负载氧化锡的活性炭纤维(SnO2/ACFs),以提高SnO2的光催化降解效率。经扫描电子显微镜(SEM)和X射线衍射(XRD)对样品测试表明,纳米尺度的SnO2在活性炭纤维载体上得到合成,SnO2/ACFs催化剂保留了ACFs的纤维状形貌。吸附和光催化实验显示,制备过程中较高的煅烧温度在一定程度上损害活性炭纤维的吸附能力,300℃下煅烧1 h制备的AS90(ACFs与SnO2的质量比为90∶10)的光催化性能最佳,且SnO2和活性炭纤维的协同作用最佳,SnO2降解亚甲基蓝效率得到提高。  相似文献   

14.
平板型多孔Al2O3陶瓷载体的研制   总被引:4,自引:0,他引:4  
曹力  李崇嘉 《应用科技》2001,28(11):51-53
通过用固态粒子烧结法制备多孔氧化铝陶瓷,研究了玻璃相物质、有机成孔剂等对多孔陶瓷的孔隙率、孔径、透水率及硬度的影响,制得了具有较高孔隙率(44%-60%),一定孔径分布及强度的多孔氧化铝陶瓷。  相似文献   

15.
采用溶胶-凝胶表面包覆法制备了纳米Fe2O3-Al2 O3复合材料, 利用X射线衍射和透射电镜对样品的物相、 粒度和形貌进行了研 究. 结果表明, α-Fe2O3掺杂降低了Al2O3相变温度, 在900 ℃可以得到稳定的α-Al2O3相.  相似文献   

16.
以松木为模板,采用模板法将不同含量的Al2O3添加到WO3/ZrO2复合氧化物中,采用X射线衍射、BET比表面积分析、拉曼光谱和NH3等温吸附测试等手段对其进行表征,以评估其改进结果。将Al2O3/WO3/ZrO2催化剂应用到甲醇与乌桕油(非食用油)的酯交换反应中,在其他反应条件相同,Al2O3质量分数为3%时,生物柴油最高产率达到83.1%。结果表明:添加Al2O3稳定了ZrO2的四方相结构,使得催化剂比表面积更大、孔数量增加;模板法制备的催化剂孔径分布均匀,WO3呈高度分散无定型状态;引入Al2O3增加了WO3/ZrO2催化剂的中强酸性,对弱酸性和强酸性无明显改变。  相似文献   

17.
采用真空热压烧结的方法制备了复合材料Cu-Al2O3,并在GLeeble-1500D热模拟机上对其进行高温压缩试验,研究了在变形温度为650~950℃,变形速率为0.01~5 s-1,最大真应变为0.7条件下的流变应力行为.结果表明:纳米级的弥散粒子和间距能在变形时作为位错源增加基体的位错密度,对位错和晶界运动起到阻碍作用,从而提高其综合力学性能.在试验变形条件下,复合材料Cu-Al2O3均表现出典型的动态再结晶特征,即随着峰值应力逐渐减小,在晶界交叉处出现再结晶晶粒,并逐渐增多,复合材料高温变形的主要软化机制为动态再结晶.  相似文献   

18.
在广阔的冻土区,水泥土抗冻性差是限制水泥土应用的一个关键性问题;在这些地区,如何提高水泥土的抗冻性是实际工程中面临的一个重大课题。通过对不同纳米CaCO_3掺量的水泥土进行冻融循环试验和无侧限抗压试验,探讨了纳米水泥土的抗压强度变化规律。试验表明:随着纳米CaCO_3的掺量的增加水泥土的抗压强度表现出先提高后降低;且对提高水泥土强度有一个最优掺量。通过冻融循环试验得到水泥土的无侧限抗压强度随着冻融循环次数的增加而逐渐降低,两者之间几乎成线性关系。在冻融循环次数相同的情况下,随着纳米CaCO_3掺量的增加,水泥土的抗压强度损失率先减小后增大;同样对降低水泥土的强度损失率也存在一个最优掺量。综合考虑水泥土试验和在实际工程中的应用,建议纳米CaCO_3掺量范围10‰~20‰。  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号