首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
1引言 由于磺化聚醚醚酮(SPEEK)膜特有的微观结构使其阻醇性能要优于Nafion膜,使其在直接甲醇燃料电池(DMFC)中的应用方面具有良好的应用前景。但随着该材料磺化度的增加,SPEEK膜的抗溶胀性能和机械性能显著下降,而低磺化度的SPEEK的质子传导能力较弱,不能满足DMFC的使用要求。  相似文献   

2.
1引言 直接甲醇燃料电池(DMFC)被认为是最适合发展可移动电源的选择之一,目前困扰DMFC发展的主要问题之一是所使用的质子交换膜(主要是杜邦公司的Nafion膜)的阻醇性能较低.磺化聚醚醚酮膜(SPEEK)[1]特有的微观结构使其阻醇性能明显的优于Nafion膜,而较低的质子传导率、较差的机械性能以及溶胀等缺点限制了它的应用;本文通过在其中加入二氧化硅(SiO2)[2]和磷钨酸(PWA)[3]制备磺化聚醚醚酮/二氧化硅/磷钨酸导电复合膜,并考察了二氧化硅及磷钨酸对复合膜溶胀性能、质子传导率及机械性能的影响.  相似文献   

3.
SPEEK/PES-C、SPEEK/SPES-C共混质子交换膜研究   总被引:3,自引:1,他引:2  
通过在磺化聚醚醚酮(SPEEK,DS=61.68%)中分别混入酚酞型聚醚砜(PES-C)、磺化酚酞型聚醚砜(SPES-C,DS=53.7%)制备出SPEEK/PES-C、SPEEK/SPES-C共混质子交换膜.结果表明,共混的两种聚合物之间均具有较好的相容性.PES-C、SPES-C的混入能有效降低膜的溶胀及甲醇透过,且随着共混量的增加,这种作用越趋明显.纯SPEEK膜在75℃左右溶解,而SPEEK/PES-C(30 wt%)、SPEEK/SPES-C(30 wt%)共混膜在80℃时溶胀度仅为22.5%、26.32%.在室温至80℃范围内,纯SPEEK及共混膜的甲醇透过系数都在10-7 cm2·s-1数量级上,远小于Nation[R]115膜.在饱和湿度下,温度大于90℃时,SPEEK/PES-C(20 wt%)共混膜电导率超过Nation[R]115膜;温度大于110℃时,SPEEK/SPES-C(30 wt%)共混膜电导率与Nafion[R]115膜相当,达到0.11 S·cm-1.高电导率,低透醇系数以及明显提高了的可使用温度表明该类共混膜有望在DMFC中使用.  相似文献   

4.
通过在磺化聚醚醚酮(SPEEK,DS=61.68%)中分别混入酚酞型聚醚砜(PES-C)、磺化酚酞型聚醚砜(SPES-C,DS=53.7%)制备出SPEEK/PES-C、SPEEK/SPES-C共混质子交换膜.结果表明,共混的两种聚合物之间均具有较好的相容性.PES-C、SPES-C的混入能有效降低膜的溶胀及甲醇透过,且随着共混量的增加,这种作用越趋明显.纯SPEEK膜在75℃左右溶解,而SPEEK/PES-C(30wt%)、SPEEK/SPES-C(30wt%)共混膜在80℃时溶胀度仅为22.5%、26.32%.在室温至80℃范围内,纯SPEEK及共混膜的甲醇透过系数都在10-7cm2.s-1数量级上,远小于Nafion115膜.在饱和湿度下,温度大于90℃时,SPEEK/PES-C(20wt%)共混膜电导率超过Nafion115膜;温度大于110℃时,SPEEK/SPES-C(30wt%)共混膜电导率与Nafion115膜相当,达到0.11S.cm-1.高电导率,低透醇系数以及明显提高了的可使用温度表明该类共混膜有望在DMFC中使用.  相似文献   

5.
DMFCs用磺化聚醚醚酮/功能化二氧化硅复合质子交换膜   总被引:1,自引:0,他引:1  
在磺化度(DS)为55.1%的磺化聚醚醚酮(SPEEK)中掺杂功能化二氧化硅(吸湿性SiO2溶胶及带有磺酸基团的二氧化硅(SiOx-S)粒子)制备SPEEK/SiO2和SPEEK/SiOx-S复合质子交换膜.SiO2和SiOx-S的掺杂能有效提高复合膜的抗溶胀、阻醇性能及高温低湿情况下的电导率.纯SPEEK膜在80℃溶胀为52.6%,而SiO2和SiOx-S掺杂量为15%的复合膜在此温度下分别仅有26.2%和27.3%的溶胀.在室温至80℃范围内,SPEEK/SiO2(20 wt%)和SPEEK/SiOx-S(20 wt%)复合膜的甲醇透过系数比Nafion115膜小近2个数量级.在120℃、相对湿度(RH)为40%情况下,SPEEK纯膜的电导率仅为2.6×10-4S.cm-1,SPEEK/SiO2(20 wt%)复合膜约为2.0×10-3S.cm-1,而SPEEK/SiOx-S(20 wt%)复合膜高达1.0×10-2S.cm-1,与Nafion115相当.SPEEK/SiO2(20 wt%)和SPEEK/SiOx-S(20 wt%)2种复合膜的尺寸稳定性较高,膜电极无催化剂与膜分离现象,其DMFCs单电池性能好于SPEEK膜.  相似文献   

6.
DMFC用PES/SPEEK共混阻醇质子交换膜   总被引:1,自引:0,他引:1  
将磺化聚醚醚酮(SPEEK, 磺化度DS为68.3%)和聚醚砜(PES)两种聚合物共混制得PES/SPEEK共混膜. DSC研究表明两种聚合物之间具有较好的相容性, 因而共混膜均匀致密, 未发生大尺度相分离. PES的混入能有效降低膜的溶胀度及甲醇透过系数. 纯SPEEK 膜40 ℃时在1 mol•L−1甲醇水溶液中溶胀度达到160%, 45 ℃时就完全溶解, 而含30%(w)PES的共混膜在80 ℃时的溶胀度仅有15%. 室温下含20%−30%(w)PES的共混膜的甲醇透过系数为1×10−7 cm2•s−1左右, 比Nafion 115膜的透过系数小一个数量级. 尽管80 ℃下30%(w)PES/SPEEK共混膜的电导率与Nafion 115膜相当, 但由于共混膜的厚度比Nafion 115膜小1/3左右, 膜电阻较小, 因而其电池性能比Nafion 115膜的好.  相似文献   

7.
直接甲醇燃料电池用磺化聚醚醚酮膜初探   总被引:1,自引:0,他引:1  
应用电化学方法研究了SPEEK膜的甲醇渗透性能.SPEEK膜具有比Nafion115膜低的甲醇渗透.以其作质子交换膜电解质组装的直接甲醇燃料电池(DMFCs)开路电压高于Nafion115膜组装的DMFC开路电压,但电池的放电性能尚待改进.本研究可为SPEEK应用于直接甲醇燃料电池提供一定的依据.  相似文献   

8.
给出了不同磺化度下的磺化聚醚醚酮(SPEEK)用作质子交换膜的一系列性能,另外提出了一种新型的酸碱共混质子交换膜,其中,磺化聚醚醚酮和壳聚糖分别被选为酸性、碱性高分子电解质,并对所制备的质子交换膜的相关性能如质子传导性,甲醇渗透性,吸水率以及膜溶胀性、热稳定性等进行了表征,结果表明此种新型复合膜尽管在质子传导性能方面有所下降,阻醇性能改变不大,但是膜溶胀性和吸水率方面有了较大的改善.磺化度为71.4%的SPEEK与壳聚糖以5∶1摩尔比共混制备的质子交换膜,其性质可以与商品化的Nafion 117相媲美,有望在甲醇燃料电池中得到应用.  相似文献   

9.
1引言 直接甲醇燃料电池(DMFC)被认为是最适合发展可移动电源的选择之一,目前困扰DMFC发展的主要问题之一是所使用的质子交换膜(主要是杜邦公司的Nation膜)的阻醇性能较低。磺化聚醚醚酮膜(SPEEK)特有的微观结构使其阻醇性能明显的优于Nation膜,而较低的质子传导率、较差的机械性能以及溶胀等缺点限制了它的应用;本文通过在其中加入二氧化硅(SiO2)和磷钨酸(PWA)制备磺化聚醚醚酮/二氧化硅/磷钨酸导电复合膜,并考察了二氧化硅及磷钨酸对复合膜溶胀性能、质子传导率及机械性能的影响。  相似文献   

10.
本文采用浓硫酸作为磺化剂,以聚醚醚酮(PEEK)为原料研究了在25℃、35℃、40℃、45℃、50℃和55℃以及2至24h磺化时间下所获得的SPEEK膜的物理化学性质,探讨了磺化温度、磺化时间对SPEEK膜的各项性能的影响.SPEEK膜的磺化度、离子交换容、含水率、导电率和钒离子渗透率等均随磺化温度和磺化时间的增加而呈...  相似文献   

11.
通过在磺化聚醚醚酮(SPEEK)中掺杂1,2,4-三羧基丁烷-2-膦酸锆(Zr(PBTC))制备出SPEEK/Zr(PBTC)复合质子交换膜.结果表明,与纯SPEEK膜相比,Zr(PBTC)的掺杂能降低复合膜的吸液量及甲醇透过系数,且随着Zr(PBTC)含量的增加,这种作用越趋明显.在室温至80℃范围内,复合膜的甲醇透过系数在10-7cm2.s-1数量级上,远小于Nafion115膜.在饱和湿度下,当温度大于90℃时,含40wt%Zr(PBTC)的复合膜电导率超过Nafion115膜,并在160℃时达到0.36S.cm-1.使用温度的提高及在高温下的高电导率表明该复合膜适合在高温DMFC中使用.  相似文献   

12.
质子交换膜是直接甲醇燃料电池(DMFC)的关键组成部分. 通过磺化制备了磺化杂萘联苯聚醚酮(SPPEK)、磺化杂萘联苯聚醚砜(SPPES)和磺化杂萘联苯聚醚砜酮(SPPESK)三种含杂萘联苯结构的新质子交换膜, 测试了其热稳定性、质子导电性和甲醇透过性能. SPPESK的热分解温度比相近离子交换容量(IEC)的SPPEK和SPPES约低100 ℃, 三种膜均具有良好的导电和阻醇性能; 分别以三种膜为电解质组装DMFC考察了其性能, DMFC的开路电压随膜的阻醇性的提高而增大, 三种膜的开路电压均高于Nafion115膜, 但在较高电流密度的区域三种新膜的性能均比Nafion115膜差.  相似文献   

13.
通过咪唑接枝、共价交联制备出交联型咪唑改性磺化聚醚醚酮(SPEEK)质子交换膜.通过接枝咪唑可以大幅提高质子电导率,25℃下电导率可达0.14 S/cm,高于Nafion膜(0.086 S/cm),并随着交联度的增加,质子电导率逐渐降低,但交联膜的致密网络结构使得甲醇渗透明显降低,当交联度为20%时膜的电导率和甲醇选择性分别高达0.105 S/cm和4.57×10~5S·s/cm~3,实现了质子电导和甲醇阻隔的均衡.通过共价交联,膜的氧化稳定性和尺寸稳定性大幅提升.采用交联度为20%的改性SPEEK膜,被动式直接甲醇燃料电池(DMFC)在25℃下的最大输出功率密度达29.7 mW/cm~2,可与商业化Nafion 115膜相媲美,展现出良好的应用前景.  相似文献   

14.
本文首先合成具有易磺化链段/难磺化链段的嵌段共聚物, 再通过温和的后磺化方法, 制备磺化聚醚醚酮/聚醚砜(SPEEK/PES)嵌段聚合物, 初步研究了膜的微观形貌和性能.  相似文献   

15.
采用含硅二胺(DMS)与磺化聚醚醚酮(SPEEK)反应,制备了交联结构质子交换膜.通过傅里叶变换红外(FTIR)和溶解实验证实交联结构的存在.采用热重分析仪(TG)、万能材料试验机和电化学综合站,研究了交联结构质子交换膜的热稳定性能、力学性能和交流阻抗.对质子交换膜的阻醇性能、水中尺寸稳定性能、吸水率、质子交换容量和质子传导率进行了详细探讨.交联改性可大幅度提高SPEEK膜的力学性能、阻醇性能以及尺寸稳定性能.通过扫描电镜(SEM)观察拉伸断面微观形貌,结果显示,DMS均匀分散在SPEEK基体中.将SPEEK/DMS交联结构质子交换膜与Nafion-117膜进行了性能对比分析,结果表明适度交联的质子交换膜具有比Nafion-117更优异的综合性能.20%的DMS对SPEEK进行交联改性后,膜的甲醇渗透系数为4.26×10-7 cm2·s-1,远低于Nafion-117的1.88×10-6 cm2·s-1;SPEEK/DMS-20%交联质子交换膜的有效选择性是Nafion-117的1.68倍.  相似文献   

16.
新型萘酐型磺化聚酰亚胺质子交换膜的合成   总被引:2,自引:0,他引:2  
以新型磺化二胺单体, 1,4-双(4-胺基-2-磺酸基苯氧基)苯(DS-TBDA)与非磺化单体1,4′-二胺基二苯醚(ODA)、 1,4,5,8-萘四酸二酐(NTDA)为原料, 采用高温聚合法, 制备了一系列具有不同磺化度的萘酐型磺化聚酰亚胺(S-PI)质子交换膜材料, 并研究了材料性能与结构的关系. 磺化度超过33%时, 质子传导率可达到与Nafion膜同一数量级的水平, 而甲醇透过率均在2.85×10-7 cm2/s以下, 比Nafion膜低1-2个数量级. 研究结果表明, 该膜有望在直接甲醇燃料电池(DMFC)中获得应用.  相似文献   

17.
以叔丁基对苯二酚(TBHQ)为双酚单体,1,4-二(4′-氟苯甲酰基)苯,3,3′-二磺酸钠基-4,4′-二氧二苯砜(SDCDPS)为原料,采用亲核缩聚反应,通过调整磺化单体和非磺化单体的比例与叔丁基对苯二酚共聚,合成了一系列具有不同磺化度的聚芳醚酮砜.通过红外光谱(FTIR),TGA,DSC等分析方法对其结构及性能进行了表征.并用TEM对其内部形态进行了研究,建立了结构与性能之间的关系.通过对膜进行综合性能评价发现,磺化度为0.8的磺化聚芳醚酮砜膜的质子传导率在80℃时达到了0.061 S/cm接近了Nafion 117,而且其甲醇渗透系数为3.4×10-7cm2/s远低于Nafion 117,在质子交换膜燃料电池(PEMFC)和直接甲醇燃料(DMFC)电池中表现出了好的应用前景.  相似文献   

18.
通过溶液流延法制备了磺化聚醚醚酮/锂皂石(SPEEK/Lap)复合膜, 对其物理化学性质、 机械性能、 化学稳定性及单电池性能进行了测试. 在SPEEK基质中引入的Lap有效改善了复合膜的质子传导率、 溶胀率和机械性能. 当Lap添加量(质量分数)从0.2%增到1.5%时, 复合膜的质子传导率随之增加(19.9~23.6 mS/cm). SPEEK/Lap-0.2复合膜的自放电时间为57.2 h, 是Nafion 117膜的2.4倍和纯SPEEK膜的1.5倍. 在80 mA/cm 2电流密度下, SPEEK/Lap-0.2复合膜的电压效率(VE, 86.5%)和能量效率(EE, 84.0%)明显高于Nafion 117膜(VE: 83.8%, EE: 80.7%)和纯SPEEK膜(VE: 81.4%, EE: 78.9%). 同时, SPEEK/Lap-0.2复合膜经100次充放电循环测试后具有良好的循环稳定性和结构稳定性.  相似文献   

19.
首先,以磺化聚醚醚酮(SPEEK)为光敏自由基载体,以聚乙烯醇(PVA)为分散稳定剂,制备了具有光生自由基功能的SPEEK/PVA高分子膜;然后,通过在SPEEK/PVA膜上紫外光诱导Ag+还原生成纳米银颗粒(AgNPs),从而得到SPEEK/PVA-AgNPs复合膜。采用紫外可见分光光度计(UV-Vis)、扫描电镜(SEM)、能谱仪(EDS)、X射线光电子能谱分析(XPS)及傅里叶变换红外光谱(FT-IR)等手段对SPEEK/PVA-AgNPs材料进行了表征。结果显示:生成的银颗粒为纳米级,较均匀地分布在SPEEK/PVA高分子膜表面,SPEEK/PVA-AgNPs复合膜整体呈现棕色;形成的银纳米颗粒具有较完整的晶型,且价态分析显示其为单质。  相似文献   

20.
制备了基于磺化聚醚醚酮(SPEEK)/部分氟化磺化聚芳醚砜(SPFAES)的共混交联型质子交换膜(CMB), 研究了其吸水率、 尺寸变化、 力学性能、 热性能、 质子电导率、 化学稳定性及电池性能等. 通过在溶液浇铸过程中加入脱水剂诱导高温脱水反应, 在共混体系内构建了交联结构. 结果表明, 由于SPEEK与SPFAES之间良好的相容性、 分散性和聚合物链的重排及交联作用, CMB膜在干态下均表现出出色的力学强度, 且物化稳定性得到大幅提升. 在低离子交换容量(1.21~1.51 mmol/g)条件下, CMB膜的质子电导率达到122~219 mS/cm(80 ℃), 在氢氧单电池中, CMB4膜的最大功率密度达到530.5 mW/cm2(80 ℃).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号