首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We report on a novel and selective method for the preconcentration and determination of Cr(VI) in aqueous samples. Cr(VI) is adsorbed - in a “batch mode” - on multiwalled carbon nanotubes covered with Aliquat 336 and then determined directly, i.e., on the solid, by X-ray fluorescence spectrometry. This reduces the number of reagents and minimizes sample handling. The method combines the advantages of solid-phase extraction with the benefits of the XRF method in that the large areas required by the carbon nanotubes make them a promising solid sorbent for preconcentration. The enrichment factor was calculated after considering that the thin film obtained from the 10?mL solution of 1?mg?L?1 of Cr(VI) has a real thickness of 0.04?mm and a final diameter of 16.7?mm, so that the volume deposited on the pellet is 0.0088 cm3 and the preconcentration factor is 1000.
A novel and selective method for the preconcentration and determination of Cr(VI) in aqueous samples is proposed. Cr(VI) is adsorbed - in a “batch mode” - on multiwalled carbon nanotubes (MWCNTs) covered with Aliquat 336 and then determined directly, i.e., on the solid, by X-ray fluorescence spectrometry. This reduces the number of reagents and minimizes sample handling.  相似文献   

2.
Bacillus vallismortis and Bacillus mojavensis were loaded onto Amberlite XAD-4 resin and used for solid phase extraction (SPE) of uranium(VI). A quick and simple UV–Vis spectrophotometric method was used to determine U(VI) ion. The best experimental conditions were determined as being a pH of 5.0; a sample flow rate of 2.0 mL min?1; 200.0 mg of biosorbent; 800 mg of Amberlite XAD-4, and 5.0 mL of 1 mol L?1 HCl as desorption solution for both immobilized bacteria. The preconcentration factors were achieved as 80 for both solid phase extractor. The developed methods were validated by applying to reference water and tea samples.  相似文献   

3.
Multiwalled carbon nanotubes were grafted with tris(2-aminoethyl)amine (MWCNTs-TAA) and employed for solid phase extraction and preconcentration of trace lead ions prior to its determination by inductively coupled plasma optical emission spectrometry. The material was characterized by FT-IR and Raman spectroscopy, thermosgravimetric and elemental analysis. The effects of pH value, shaking time, sample volume, elution conditions and potentially interfering ions were investigated. Under the optimum conditions, the maximum adsorption capacity is 38?mg?g?1 of Pb(II), the detection limit is 0.32?ng?mL?1, the enrichment factor is 60, and the relative standard deviation is 3.5% (n?=?6). The method has been applied to the preconcentration of trace amounts of Pb(II) in environmental water samples with satisfactory results.
Figure
Oxidized multiwalled carbon nanotubes grafted with tris(2-aminoethyl)amine (MWCNTs-TAA) is prepared and employed as solid phase extraction sorbent to determinate the trace Pb(II) in water samples. The method has been applied to the preconcentration of trace amount of Pb(II) in water samples with satisfactory results.  相似文献   

4.
A new solid-phase extraction sorbent was used for the preconcentration of Pb(II) and Cr(III) ions prior to their determination by flame atomic absorption spectrometry. It was prepared by immobilization of 2,4-dinitrophenylhydrazine on nano-alumina coated with sodium dodecyl sulfate. The sorbent was characterized by scanning electron microscopy, N2 adsorption and Fourier transform infrared spectrometry, and used for preconcentration and separation of Pb(II) and Cr(III) from aqueous solutions. The ions on the sorbent were eluted with a mixture of nitric acid and methanol. The effects of sample pH, flow rates of samples and eluent, type of eluent, breakthrough volume and potentially interfering ions were studied. Linearity is maintained between 1.2 and 350???g?L-1 of Pb(II), and between 2.4 and 520???g?L-1 of Cr(III) for an 800-mL sample. The detection limit (3?s, N?=?10) for Pb(II) and Cr(III) ions is 0.43 and 0.55???g?L-1, respectively, and the maximum preconcentration factor is 267. The method was successfully applied to the evaluation of these trace and toxic metals in various water, food, industrial effluent and urine samples.
Figure
Recovery percentage of Pb(II) and Cr(III) ions at different solution volumes.  相似文献   

5.
We describe a new method for the separation and preconcentration of traces of Au(III) in environmental samples. Sorbents made from modified multiwalled carbon nanotubes and conducting polymers (PANI and PEDOT) were used for solid-phase extraction. The Au(III) ions are adsorbed as a result of the interaction with the electron pairs of =N- and -S- groups. Effects of pH value, flow rate and volume of sample, type, volume and concentration of eluent, and the adsorption capacity were investigated. The maximum adsorption capacity of MWCNTs/PANI and MWCNTs/PEDOT are 159 and 176?mg?g?1, and the detection limits of this method are below 0.3 and 0.5?ng?mL?1, respectively. The procedure was successfully applied to the determination of traces of Au(III) in a reference material and in environmental samples.
Figure
The multiwalled carbon nanotubes/conducting polymers (PANI and PEDOT) were used for solid-phase extraction of Au(III) ions. The Au(III) adsorbed on macromolecules chains; resulting from sharing an electron pair of = N?C and ?CS?C groups of conducting polymers with gold ions. The final results demonstrate that nanocomposites are convenient for preconcentration and determination of gold from environmental samples.  相似文献   

6.
Fungi of the type Aspergillus sp. were immobilized on a cellulosic resin and used as a biosorbent for the on-line preconcentration and separation of Pt(IV) ions prior to their chemiluminescent determination via flow injection analysis. Biosorption and elution conditions were optimized, and the results compared to biosorbents based on the use of Chlorella vulgaris algae and Saccharomyces cerevisiae yeast in terms of preconcentration and selective retention of Pt(IV). The immobilized fungi presented here have a high potential for use in platinum biosorption. The procedure exhibits the currently lowest limit of detection (0.02 ng mL?1 of Pt) and very high selectivity. The procedure was applied to the determination of Pt(IV) in river water, road run-off, and wastewater samples.
Figure
Schematic diagram of flow injection manifold for on-line preconcentration/separation of Pt(IV) on immobilized fungi followed by its luminol-based chemiluminescent determination. The CL-FIA manifold was applied to the determination of platinum in river water, road run-off, and wastewater samples.  相似文献   

7.
A solid phase extraction method is presented for the selective preconcentration and/or separation of trace Pb(II) on multiwalled carbon nanotubes modified with 2-aminobenzothiazole. Inductively coupled plasma optical emission spectrometry was used for detection. The effects of pH, shaking time, sample flow rate and volume, elution condition and interfering ions were examined using batch and column procedures. An enrichment factor of 100 was accomplished. Common other ions do not interfere in both the separation and determination. The maximum adsorption capacity of the sorbent at optimum conditions is 60.3?mg?g?1 of Pb(II), the detection limit (3??) is 0.27?ng?mL?1, and the relative standard deviation is 1.6% (n?=?8). The method was validated using a certified reference material, and has been applied to the determination of trace Pb(II) in water samples with satisfactory results.
Figure
2-Aminobenzothiazole modified multiwalled carbon nanotubes has been developed to separate and concentrate trace Pb(II) from aqueous samples. Parameters that affect the sorption and elution efficiency were studied in batch and column modes, and the new sorbent (MWCNTs-ABTZ) presents high selectivity and adsorption capacity for the solid phase extraction of trace Pb(II).  相似文献   

8.
We report on a glassy carbon electrode (GCE) modified with a lead ionophore and multiwalled carbon nanotubes. It can be applied to square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) for 300?s in pH?4.5 acetate buffer containing 400?μg?L?1 of Bi(III). The ionophore-MWCNTs film on the GCE possesses strong and highly selective affinity for Pb(II) as confirmed by quartz crystal microbalance experiments. Under the optimum conditions, a linear response was observed for Pb(II) ion in the range from 0.3 to 50?μg?L?1. The limit of detection (at S/N?=?3) is 0.1?μg?L?1. The method was applied to the determination of Pb(II) in water samples with acceptable recovery.
Figure
A glassy carbon electrode modified with a lead ionophore and multiwalled carbon nanotubes is successfully applied to sensitive and selective square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) in pH?4.5 solutions containing 400?μg?L?1 of Bi(III).  相似文献   

9.
A new sorbent was prepared by immobilization of 2,6-diaminopyridine on activated carbon and then used as a solid-phase extractant for trace Au(III), Pd(II) and Pt(IV) before their determination by ICP-AES. Effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the potentially interfering ions were investigated. The optimum pH value is 1. The maximum static adsorption capacity for the three ions is 202.7, 38.5 and 30.1?mg?g?1, respectively. The adsorbed metal ions can be completely eluted by 2?mL of the eluent solution that contains 0.05?mol?L?1 HCl and 5% thiourea. Common other ions do not interfere. The detection limits (3??) are 0.16, 0.33 and 0.29?ng?mL?1, respectively. The relative standard deviation (RSD) was lower than 3.0% (n?=?8). The new sorbent was applied to the preconcentration of the three ions in ore and rock samples with satisfactory results.
Figure
Au(III), Pd(II), Pt(IV) are absorbed at pH 1. The maximum static adsorption capacity is 202.7, 38.5 and 30.1?mg?g?1. The eluent is 2?mL of the eluent solution that contains 0.05?mol?L?1 HCl and 5% thiourea. The relative standard deviation (RSD) was lower than 3.0% (n?=?8).  相似文献   

10.
We report on a method for the extraction of the lanthanide ions La(III), Sm(III), Nd(III) and Pr(III) using a carbon-ferrite magnetic nanocomposite as a new adsorbent, and their determination via flow injection ICP-OES. The lanthanide ions were converted into their complexes with 4-(2-pyridylazo)resorcinol, and these were adsorbed onto the nanocomposite. Fractional factorial design and central composite design were applied to optimize the extraction efficiencies to result in preconcentration factors in the range of 141–246. Linear calibration plots were obtained, the limits of detection (at S/N?=?3) are between 0.5 and 10 μg?L?1, and the intra-day precisions (n?=?3) range from 3.1 to 12.8 %. The method was successfully applied to a certified reference material.
Figure
Superparamagnetic activated carbon based nanocomposite was synthesized and applied for extraction and determination of some rare earth elements in water samples  相似文献   

11.
We have developed a method for the determination of trace levels of total selenium in water samples. It integrates preconcentration, in-situ photoreduction and slurry photochemical vapor generation using TiO2 nanoparticles, and the determination of total selenium by AFS. The Se(IV) and Se(VI) species were adsorbed on a slurry of TiO2 nanoparticles which then were exposed to UV irradiation in the presence of formic acid to form volatile selenium species. The detection limits were improved 17-fold compared to hydride generation and 56-fold compared to photochemical vapor generation, both without any preconcentration. No significant difference was found in the limits of detection (LODs) for Se(IV) and Se(VI). The LOD is as low as 0.8 ng L?1, the precision is better than 4.5 % (at a level of 0.1 μg L?1 of selenium). The method gave good recoveries when applied to the determination of total selenium in a certified tissue reference material (DORM-3) and in spiked drinking water and wastewater samples containing high concentrations of transition and noble metal ions. It also excels by very low LODs, a significant enhancement of sample throughput, reduced reagent consumption and sample loss, and minimal interference by transition and noble metal ions.
Figure
A method integrating pre-concentration, in situ photo-reduction and slurry photochemical vapor generation by using TiO2 nanoparticles was developed for sensitive determination of total selenium in various water samples by atomic fluorescence spectrometry.  相似文献   

12.
A method was established for the preconcentration of trace concentrations of Er(III) ion using activated carbon modified with benzoyl hydrazine. Parameters affecting solid-phase extraction such as pH value, shaking time, flow rate, sample volume were systematically studied. At a pH of 3.0, the maximum static adsorption capacity of the sorbent is 59.8?mg?g?1 for Er(III), and the time for quantitative adsorption (>95%) is as short as 2?min. The adsorbed Er(III) was quantitatively eluted with 2?mL of 1.0?M hydrochloric acid and then determined by inductively coupled plasma optical emission spectrometry. The limit of detection (3??) is 73?ng?g?1, and the relative standard deviation is <2.0% (n?=?8). The method was validated by analyzing certified reference materials and successfully applied to the determination of trace Er(III) in environmental samples.
Figure
Activated carbon modified with benzoyl hydrazine (AC-BH) has been used for preconcentration of Er(III) ion. Parameters affecting solid-phase extraction were systematically studied. The important characteristics of AC-BH are its excellent adsorptive selectivity towards Er(III) over other ions, short extraction time, high adsorption capacity and high enrichment factor.  相似文献   

13.
The article describes how solar ultraviolet-A radiation can be used to digest samples as needed for voltammetric ultratrace determination of uranium(VI) in river water. We applied adsorptive stripping voltammetry (AdSV) using chloranilic acid as the complexing agent. Samples from the river Warnow in Rostock (Germany) were pretreated with either soft solar UV or wit artificial hard UV from a 30-W source emitting 254-nm light. Samples were irradiated for 12?h, and both methods yielded the same results. We were able to detect around 1?μg·L?1 of uranium(VI) in a sample of river water that also contained dissolved organic carbon at a higher mg·L?1 levels. No AdSV signal was obtained for U(VI) without any UV pre-treatment. Pseudo-polarographic experiments confirmed the dramatic effect of both digestion techniques the the AdSV response. The new method is recommended for use in mobile ultratrace voltammetry of heavy metals for most kinds of natural water samples including tap, spring, ground, sea, and river waters. The direct use of solar radiation for sample pre-treatment represents a sustainable technique for sample preparation that does not consume large quantities of chemicals or energy.
Figure
Adsorptive stripping voltammetry response of uranium(VI) in a) Original Sample b) 6?h Solar UV Sample, c) 12?h Solar UV Sample, and d) 6?h UV Sample with standard additions of 2, 4 and 6?μg?L-1. Potentials are given vs. Ag/AgCl (3?M KCl).  相似文献   

14.
We have prepared a highly selective and efficient sorbent for the simultaneous separation and preconcentration of lead and cadmium ions from milk and water samples. An ionic liquid was deposited on the surface of magnetic nanoparticles (IL-MNPs) and used for solid phase extraction of these ions. The IL-MNPs carrying the target metals were then separated from the sample solution by applying an external magnetic field. Lead and cadmium were almost quantitatively retained by the IL-MNPs, and then eluted with nitric acid. The effect of different variables on solid phase extraction was investigated. The calibration curve is linear in the range from 0.3 to 20?ng mL?1 of Cd(II), and from 5 to 330?ng mL?1 of Pb(II) in the initial solution. Under optimum conditions, the detection limits are 1.61 and 0.122?μg?L-1 for Pb(II) and Cd(II) respectively. Relative standard deviations (n?=?10) were 2.87?% and 1.45?% for 0.05?μg?mL-1 and 0.2?μg?mL-1 of Cd (II) and Pb (II) respectively. The preconcentration factor is 200 for both of ions.
Figure
A novel, highly selective and efficient sorbent, was prepared and applied for separation and preconcentration of lead and cadmium from real samples. Lead and cadmium could be quantitatively retained by ionic liquid-modified magnetite nanoparticles and then easily separated from the aqueous solution by applying an external magnetic field; so, no filtration or centrifugation was necessary.  相似文献   

15.
We have developed a highly sensitive microextraction method for the preconcentration of some phthalate esters such as diethyl phthalate, di-n-propylphthalate, di-n-butyl-phthalate, dicyclohexyl-phthalate, and diethyl-hexyl phthalate prior to their determination by HPLC. It is based on a magnetic graphene nanocomposite as an effective adsorbent. The effects of the amount of the extractant composite employed, extraction time, pH values, salt concentration and desorption conditions were investigated. Under the optimum conditions, the enrichment factors range from 1574 to 2880. Response is linear in the concentration range from 0.1 to 50?ng?mL?1. The limits of detection (at S/N?=?3) were between 0.01 and 0.04?ng?mL?1. The method was successfully applied to the determination of five phthalate esters in water and beverage samples.
A novel microextraction method was developed by using magnetic graphene nanocomposite as an effective adsorbent for the preconcentration of some trace phthalate esters in water and beverage samples followed by high performance liquid chromatography with ultraviolet detection. The enrichment factors of the method for the compouds were achieved ranging from 1574 to 2880.  相似文献   

16.
We report on a new method for preconcentration of silver ion at trace level in environmental samples, and its subsequent determination by flame atomic absorption spectrometry (FAAS). The room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafuorophosphate and the chelator 5-(4-dimethylaminobenzylidene)-rhodanine were used for extraction. Ag(I) was back-extracted from the organic phase into thiosulfate solution and then determined via FAAS. The effects of pH, concentration of chelating agent, extraction time and temperature, amounts of ionic liquid, ionic strength and potentially interfering ions were studied. Under optimized conditions, the enhancement factor is 30 was achieved. The detection limit (3???) is 0.28?ng?mL?1, and the relative standard deviation is 4.1% for 7 replicate determinations at 5?ng?mL?1 of Ag(I). The method was validated by analysis of certified reference materials and applied to the determination of Ag(I) in environmental samples with satisfactory results.
Graphical abstract
Silver ions at trace level in environmental samples were chelated by 5-(4-dimethylaminobenzylidene)-rhodanine and preconcentrated by room temperature ionic liquid. After back-extraction, silver was determined by flame atomic absorption spectrometry sensitively.  相似文献   

17.
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of multiwalled carbon nanotubes and Amberlite IR-120. The anodic stripping voltammograms depend, to a large extent, on the composition of the modified electrode and the preconcentration conditions. Under optimum conditions, the anodic peak current at around ?0.57 V is linearly related to the concentration of Pb(II) in the range from 9.6?×?10?8 to 1.7?×?10?6 mol L?1 (R?=?0.998). The detection limit is 2.1?×?10?8 mol L?1, and the relative standard deviation (RSD) at 0.24?×?10?6 mol L?1 is 1.7% (n?=?6). The modified electrode was applied to the determination of Pb(II) using the standard addition method; the results showed average relative recoveries of 95% for the samples analysed.
Figure
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of MWCNT and Amberlite IR-120. The method showed a good linearity for 9.6?×?10?8 - 1.7?×?10?6 mol L?1 and detection limit of 2.1?×?10?8 mol L?1.  相似文献   

18.
We have developed a cloud point extraction procedure based on room temperature ionic liquid for the preconcentration and determination of mercury in water samples. Mercury ion was quantitatively extracted with tetraethyleneglycol-bis(3- methylimidazolium) diiodide in the form of its complex with 5,10,15,20-tetra-(4-phenoxyphenyl)porphyrin. The complex was back extracted from the room temperature ionic liquid phase into an aqueous media prior to its analysis by spectrofluorimetry. An overall preconcentration factor of 45 was accomplished upon preconcentration of a 20?mL sample. The limit of detection obtained under the optimal conditions is 0.08?μg mL?1, and the relative standard deviation for 10 replicate assays (at 0.5?g mL?1 of Hg) was 2.4%. The method was successfully applied to the determination of mercury in tap, river and mineral water samples.
Figure
In this work, a novel and sensitive analytical methodology for mercury preconcentration and determination in different water samples using ionic liquid was developed. The use of room temperature ionic liquid‘s biphasic systems as an alternative to conventional solvents offers several advantages including safety and high capacity to extract Hg(II) and other elements with high recoveries. ?onic liquid in combination with porphyrin complexing reagent was successfully applied in this study for the extraction and preconcentration of Hg(II). Likewise, a fast and quantitative back extraction of the analyte from room temperature ionic liquid phase into aqueous phase was possible, allowing its further determination by spectrofluorimetry. The preconcentration method allowed mercury determination in tap, river and mineral water samples at trace levels with high accuracy and reproducibility.  相似文献   

19.
We have developed a convenient, selective and reliable method for the rapid enrichment of trace quantities of Cu(II) by using a magnetic Cu(II) ion-imprinted polymer. This is followed by their determination by FAAS. The imprints were prepared by using (a) Cu(II) ions as the template, (b) 3-aminopropyltriethoxysilane as both the functional monomer and the crosslinking agent, and (c) Fe3O4 as the magnetic component. Enrichment is carried out in a single step, and adsorbed copper ions can be separated from the sample solution by applying a strong magnet. The effects of pH, elution condition, amount of imprint, and of potentially interfering ions were evaluated. Under the optimal conditions, the detection limit and enrichment factor are 0.3?μg L?1 and 100, respectively, and the recovery is >95?%. The procedure was successfully applied in the enrichment and detection of trace copper ions in environmental water.
Figure
General procedure for preconcentration/recovery of Cu (II) ions  相似文献   

20.
Multiwalled carbon nanotubes were impregnated with 4-(2-thiazolylazo)resorcinol and used for the separation and preconcentration of Cd(II), Pb(II), Zn(II) and Ni(II) ions from food samples. The analytes were quantitatively recovered at pH 7.0 and eluted with 3?mol?L?1 acetic acid. The effects of pH value, flow rate, eluent type and sample volume on the recoveries, and the effects of alkali, earth alkali and transition metals on the retention of the analytes were studied. The method was validated using the standard certified reference materials SRM 1570A (spinach leaves) and IAEA 336 (lichen), and the results were found to be compatible with the certified values of reference materials. The new enrichment procedure was applied to the determination of these ions in various food samples.
Figure
Multiwalled carbon nanotubes were impregnated with 4-(2-thiazolylazo)resorcinol and used for the separation and preconcentration of Cd(II), Pb(II), Zn(II) and Ni(II) ions from food samples. The analytes were quantitatively recovered at pH 7.0 and eluted with 3 mol L-1 acetic acid. The method was validated using the standard certified reference materials SRM 1570A (spinach leaves) and IAEA 336 (lichen), and the results were found to be compatible with the certified values of reference materials. The new enrichment procedure was applied to the determination of these ions in various food samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号