首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a simple method for the direct and quantitative determination of L-tryptophan (Trp) and L-tyrosine (Tyr) using a glassy carbon electrode (GCE) modified with single-walled carbon nanohorns (SWCNHs). The SWCNH modified GCE exhibits high electrocatalytic activity towards the oxidation of both Trp and Tyr. It shows a linear response to Trp between 0.5 and 50 μM and to Tyr between 2 and 30 μM. The detection limits for Trp and Tyr are 50 nM and 400 nM, respectively. In addition, the modified GCE displays good selectivity and good sensitivity, thus making it suitable for the determination of Trp and Tyr in spiked serum samples.
Figure
The electrochemical sensor based on single-walled carbon nanohorns modified glassy carbon electrode was presented. The fabricated electrochemical sensor exhibits favorable analytical performance for L-tryptophan and L-tyrosine with high sensitivity, low detection limit, and good reproducibility.  相似文献   

2.
We describe a modified glassy carbon electrode (GCE) for the sensitive determination of nitrite in waste water samples. The GCE was modified by electrodeposition of cobalt oxide nanoparticles on multi-walled carbon nanotubes (MWCNTs) deposited on a conventional GCE. Scanning electron microscopy and electrochemical techniques were used for the characterization of the composite material which is very uniform and forms a kind of nanoporous structure. Electrochemical experiments showed that the modified electrode exhibited excellent electrocatalytic properties for nitrite. Amperometry revealed a good linear relationship between peak current and nitrate concentration in the 0.5 to 250???M range with a detection limit of 0.3???M (S/N?=?3). The method has been applied to the amperometric detection of nitrite. The modified electrode displays good storage stability, reproducibility, and selectivity for a promising practical application.
Figure
The dense and entangled CoOx/MWCNTs nanocomposite showed a three-dimensional nanoporous structure. The three-dimensional nanoporous structure provided ample space to allow fast mass transport of ions through the electrolyte/electrode interface as well as a conductive network for enhancing electronic conductivity which was favorable to the catalytic application of CoOx.  相似文献   

3.
We describe a simple, green and controllable approach for electrochemical synthesis of a nanocomposite made up from electrochemically reduced graphene oxide (ERGO) and gold nanoparticles. This material possesses the specific features of both gold nanoparticles and graphene. Its morphology was characterized by scanning electron microscopy which reveals a homogeneous distribution of gold nanoparticles on the graphene sheets. Cyclic voltammetry was used to evaluate the electrochemical properties of this nanocomposite towards dopamine by modification of it on surface of glassy carbon electrode (GCE). Compared to the bare GCE, the electrode modified with gold nanoparticles, and the electrode modified with ERGO, the one modified with the nanocomposite displays better electrocatalytic activity. Its oxidation peak current is linearly proportional to the concentration of dopamine (DA) in the range from 0.1 to 10?μM, with a detection limit of 0.04?μM (at S/N?=?3). The modified electrode also displays good storage stability, reproducibility, and selectivity.
Figure
Electrochemical reduced graphene oxide (ERGO) before and after electrochemical deposition of Au nanoparticles. Au nanoparticles with diameters of about 40–50?nm integrate uniformly with the ERGO. Electrochemical experiment results indicate that the nanocomposites modified electrode displays a wide linear range, excellent selectivity and sensitivity to DA.  相似文献   

4.
We have developed a simple and efficient method for the enhanced loading of silver nanoparticles onto carbon nanospheres, and how this method can be used to design an electrochemical sensor for hydrogen peroxide (HP). A glassy carbon electrode was modified with hemoglobin, carbon nanospheres, and by enhanced loading of silver nanoparticles onto the carbon nanospheres via spontaneous polymerization of dopamine. The hemoglobin exhibits a remarkable electrocatalytic activity for the reduction of HP. The electrochemical response to HP is linear range in the 1.0–147.0?μM concentration range, with a detection limit of 0.3?μM at a signal-to-noise ratio of 3.
Figure
A simple and efficient method has developed for enhanced loading of silver nanoparticles onto carbon nanospheres via polydopamine (AgNP-Pdop@CNPs). The direct chemistry of hemoglobin has been achieved at the AgNP-Pdop@CNPs modified glassy carbon electrode and the modified electrode exhibits a remarkable electrocatalytic activity for the reduction of hydrogen peroxide. The electrochemical response to H2O2 shows a linear range of 1.0–147.0?μM with a calculated detection limit of 0.3?μM at a signal-to-noise ratio of 3  相似文献   

5.
We describe a glassy carbon electrode (GCE) modified with a film composed of Nafion and TiO2-graphene (TiO2-GR) nanocomposite, and its voltammetric response to the amino acids L-tryptophane (Trp) and L-tyrosine (Tyr). The incorporation of TiO2 nanoparticles with graphene significantly improves the electrocatalytic activity and voltammetric response compared to electrodes modified with Nafion/graphene only. The Nafion/TiO2-GR modified electrode was used to determine Trp and Tyr with detection limits of 0.7 and 2.3 μM, and a sensitivity of 75.9 and 22.8 μA mM?1 for Trp and Tyr, respectively.
Figure
The electrochemical sensor based on Nafion/TiO2-GR composite film modified GCE was presented. The integration of TiO2 nanoparticles with graphene provides an efficient microenvironment to promote the electrochemical reaction of amino acids Trp and Tyr. The fabricated electrochemical sensor exhibits favorable analytical performance for Trp and Tyr, with high sensitivity, low detection limit and good reproducibility.  相似文献   

6.
A glassy carbon electrode (GCE) was modified with nickel(II) hydroxide nanoparticles and a film of molybdenum sulfide. The nanocomposite was prepared by two-step electrodeposition. Scanning electron microscopy reveals that the nanoparticles are uniformly deposited on the film. Cyclic voltammetry and chronoamperometry indicate that this modified GCE displays a remarkable electrocatalytic activity towards nonenzymatic oxidation of glucose. Response is linear in the 10–1,300 μM concentration range (R 2 ?=?0.9987), the detection limit is very low (5.8 μM), response is rapid (< 2 s), and selectivity over ascorbic acid, dopamine, uric acid, fructose and galactose is very good.
Figure
An efficient nonenzymatic glucose sensor based on Ni(OH)2/MoSx nanocomposite modified glassy carbon electrode has been fabricated via a two-step electrodeposition approach. The resulting nonenzymatic sensor exhibits excellent properties toward glucose detection, such as low detection limit, fast response and noticeable selectivity.  相似文献   

7.
Platinum nanoparticles were electrodeposited onto a film of dihexadecyl hydrogen phosphate deposited on a glassy carbon electrode (GCE) and modified with dispersed acetylene black. Scanning electron microscopy and electrochemical impedance spectroscopy revealed that this nanocomposite has a uniform nanostructure and a large surface area that enables fast electron-transfer kinetics. The modified GCE showed high electrocatalytic activity for the oxidation of nitric oxide (NO). Under optimal conditions, the oxidation peak current of nitric oxide is linearly related to the concentration of NO in the concentration range between 0.18 and 120?μM, and the detection limit is as low as 50?nM (at an S/N of 3). The modified electrode was successfully applied to sensing of NO as released from rat liver.
Figure
Acetylene black (AB) was dispersed with dihexadecyl hydrogen phosphate (DHP) and modified on the surface of glassy carbon electrode (GCE) to fabricate AB/GCE, after activating in NaOH solution, the AB film became more porous and loosened, then through electrodepositing Pt nanoparticles (PtNPs) on the activated AB film, PtNP/AB/GCE was obtained, which was denoted as NO electrochemical sensor.  相似文献   

8.
Graphene was prepared by electrochemical reduction of exfoliated graphite oxide at cathodic potentials, and used to fabricate a graphene-modified glassy carbon electrode (GCE) which was applied in a sensor for highly sensitive and selective voltammetric determination of hydroquinone (HQ). Compared to a bare (conventional) GCE, the redox peak current for HQ in pH 5.7 acetate buffer solution is significantly increased, indicating that graphene possesses electrocatalytic activity towards HQ. In addition, the peak-to-peak separation is significantly improved. The modified electrode enables sensing of HQ without interference by catechol or resorcinol. Under optimal conditions, the sensor exhibits excellent performance for detecting HQ with a detection limit of 0.8?μM, a reproducibility of 2.5% (expressed as the RSD), and a recoveries from 98.4 to 101.2%.
Figure
Graphene based glassy carbon electrode was used to determine hydroquinone in the simultaneous presence of it isomers of catechol (CC) and resorcinol (RC). The desired sensitivity and selectivity is attributed to the good conductivity and excellent electrocatalytic ability of graphene.  相似文献   

9.
A highly sensitive electrochemical sensor for determination of L-cysteine (CySH) is presented. It is based on vertically aligned multiwalled carbon nanotubes modified with Pt nanoparticles by magnetron sputtering deposition. The morphology of the nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy and energy-dispersive. The electrochemistry of CySH was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The mechanism for the electrochemical reaction of CySH at the modified electrode at different pH values is discussed. The electrode exhibits a higher electrocatalytic activity towards the oxidation of CySH than comparable other electrodes. It displays a linear dependence (R 2?=?0.9980) on the concentration of CySH in the range between 1 and 500 μM and at an applied potential of +0.45 V, a remarkably low detection limit of 0.5 μM (S/N?=?3), and an outstandingly high sensitivity of 1.42?×?103 μA?mM?1?cm?2, which is the highest value ever reported. The electrode also is highly inert towards other amino acids, creatinine and urea. The sensor was applied to the determination of CySH in urine with satisfactory recovery, thus demonstrating its potential for practical applications.
Figure
Pt nanoparticles on carbon nanotubes by sputtering deposition show high performance for L-cysteine sensing  相似文献   

10.
We describe a highly sensitive and selective amperometric sensor for the determination of nitrite. A glassy carbon electrode was modified with a composite made from gold nanoparticles (AuNPs) and sulfonated graphene (SG). The modified electrode displays excellent electrocatalytic activity in terms of nitrite oxidation by giving much higher peak currents (at even lower oxidation overpotential) than those found for the bare electrode, the AuNPs-modified electrode, and the SG-modified electrode. The sensor has a linear response in the 10 μM to 3.96 mM concentration range, a very good detection sensitivity (45.44 μA mM?1), and a lower detection limit of 0.2 μM of nitrite. Most common ions and many environmental organic pollutants do not interfere. The sensor was successfully applied to the determination of nitrite in water samples, and the results were found to be consistent with the values obtained by spectrophotometry.
Figure
A highly sensitive amperometric sensor for nitrite using a glassy carbon electrode modified with gold nanoparticles/sulfonated graphene (AuNPs/SG) composites is presented  相似文献   

11.
In the present work, we described the preparation of iron nanoparticles decorated graphene-multiwalled carbon nanotubes nanocomposite (GR-MWCNTs/FeNPs) modified glassy carbon electrode (GCE) and its application for the sensitive determination of nitrite. First, GR-MWCNTs/FeNPs nanocomposite has been prepared by a simple solution-based approach via chemical reduction and then it was characterized. Afterwards, GR-MWCNTs/FeNPs/GCE was prepared and employed for the electrocatalysis of nitrite. Electrocatalytic oxidation of nitrite at the GR-MWCNTs/FeNPs/GCE has been significantly improved in terms of both reduction in overpotential and increase in peak current. Therefore, the modified electrode was employed for amperometric determination of nitrite which exhibited excellent analytical parameters with wide linear range of 1?×?10?7 M to 1.68?×?10?3 M and very low detection limit of 75.6 (±1.3)?nM. The proposed sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferrants. Good recoveries achieved for the determination of nitrite in various water samples reveal the promising practicality of the sensor. In addition, the sensor displays an acceptable repeatability and reproducibility along with appreciable storage and excellent operational stabilities.
Figure
Schematic representation for the preparation of GR-MWCNTs/FeNPs nanocomposite and its electrocatalysis towards nitrite  相似文献   

12.
We report on a new type of indium tin oxide (ITO) electrode for sensing ascorbic acid (AA). The ITO film was modified with gold-platinum alloy nanoparticles (Au-Pt NPs) functionalized with a self-assembled film of L-cysteine. The Au-Pt NPs were electrodeposited on the ITO film and characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. A cyclic voltammetric study revealed that the electrode exhibits excellent electrocatalytic activity towards the oxidation of AA. The calibration plot for AA is linear over the concentration range from 2 to 400???M with a correlation coefficient of 0.9991. The detection limit of AA is 1???M.
Figure
Gold-platinum nanoparticles were electrodeposited on the indium tin oxide electrode surface and then self-assembled with cysteine. The resulting sensor exhibited excellent electrocatalytic activity towards the oxidation of ascorbic acid. The modified electrode is high sensitivity, easy fabrication, mediator-free and low cost.  相似文献   

13.
We have prepared a novel sensor for hydrogen peroxide that is based on a glassy carbon electrode modified with a film containing multi-walled carbon nanotubes wired to CuO nanoflowers. The nanoflowers were characterized by X-ray powder diffraction, and the electrode was characterized by cyclic voltammetry (CV) and scanning electron microscopy. The response of the modified electrode towards hydrogen peroxide was investigated by CV and chronoamperometry and showed it to exhibit high electrocatalytic activity, with a linear range from 0.5?μM to 82?μM and a detection limit of 0.16?μM. The sensor also displays excellent selectivity and stability.
Graphical abstract
We have prepared a novel sensor for hydrogen peroxide (H2O2) that is based on a glassy carbon electrode modified with a film containing multi-walled carbon nanotubes (MWCNTs) wired to CuO nanoflowers. The scheme shows the construction of the MWCNTs-wired CuO nanoflowers modified electrode and electrocatalytic activity towards H2O2. When H2O2 was added, the cathodic peak current of the CuO-MWCNTs/GCE remarkably increased while its anodic peak current obviously decreased. By increasing the concentration of H2O2, the cathodic peak current further increased while its anodic peak current further decreased. Indicating CuO-MWCNTs/GCE has a remarkable electrocatalytic activity for H2O2. The scheme. The construction of the MWCNTs-wired CuO nanoflowers modified electrode and electrocatalytic activity towards H2O2  相似文献   

14.
A sensitive amperometric sensor for hydrogen peroxide (HP) was constructed that is based on a glassy carbon electrode (GCE) modified with silver nanoparticles on poly(alizarin yellow R). The polymer was electropolymerized onto the surface of the GCE by cyclic voltammetry (CV), and the AgNPs were then electrodeposited onto its surface. The electrode was characterized by scanning electron microscopy and CV, and used for amperometric determination of HP. The electrode exhibits a favorable catalytic activity towards the reduction of HP, with a linear response range from 1.0???M to 450???M and a detection limit of 0.32???M. The sensor also displays high selectivity, excellent reproducibility, and good long-term stability.
Figure
Schematic representation of the preparation process of the HP sensor and catalytic activity towards HP  相似文献   

15.
A differential pulse voltammetric method was developed for the simultaneous determination of paracetamol, 4-aminophenol and dopamine at pH 7.0 using a glassy carbon electrode (GCE) coated with gold nanoparticles (AuNPs) and a layered double hydroxide sodium modified with dodecyl sulfate (SDS-LDH). The modified electrode displays excellent redox activity towards paracetamol, and the redox current is increased (and the corresponding over-potential decreased) compared to those of the bare GCE, the AuNPs-modified GCE, and the SDS-LDH-modified GCE. The modified electrode enables the determination of paracetamol in the concentration range from 0.5 to 400???M, with a detection limit of 0.13???M (at an S/N of 3). The sensor was successfully applied to the stimultaneous determination of paracetamol and dopamine, and of paracetamol and 4-aminophenol, respectively, in pharmaceutical tablets and in spiked human serum samples.
Figure
1. Gold nanoparticles and organophillic layered double hydroxide modified glassy carbon electrode was fabricated. 2. The modified electrode displayed excellent redox activity towards paracetamol. 3. This electrode was successfully applied to the simultaneous determination of paracetamol and dopamine, and of paracetamol and 4-aminophenol, respectively  相似文献   

16.
We report on the electrodeposition of palladium nanomaterials in choline chloride–based ionic liquid ethaline. A glassy carbon electrode (GCE) was modified with cobalt nanoparticles (acting as sacrificial templates) and a GCE modified with palladium nanoparticles (PdNPs) were fabricated and used to study the electrocatalytic oxidation of hydrazine (N2H4). Scanning electron microscopy revealed that the PdNP modified GCE has a uniform morphology. Zero current potentiometry was used for in-situ probing the changes in interfacial potential of the oxidation of hydrazine. An amperometric study showed that the PdNP modified GCE possesses excellent electrocatalytic activity towards N2H4. The modified electrode displays a fast response (<2 s), high sensitivity (74.9 μA m(mol L?1)?1?cm?2) and broad linearity in the range from 0.1 to 800 μmol L?1 with a detection limit of 0.03 μmol L?1 (S/N?=?3).
Figure
Scheme 1 illustrated the fabrication strategy of the PdNPs/GCE. The first step was the electrodeoposition of CoNPs on the bare GCE. The second step is consist of two processes: (1) A replacement reaction of CoNPs and Pd2+ was happened along with the formation of PdNPs. CoNPs on the electrode were translated into Co2+ and went into the solution. Pd2+ in the solution was translated into PdNPs and adhered to the GCE surface. (2) A certain voltages was applied, the unreacted Pd2+ was further electrochemical deposited on the formed PdNPs nucleus. This is the first attempt to joint chemical replacement action with template assisted electrodeposition.  相似文献   

17.
A glassy carbon electrode (GCE) was modified with the nickel(II)-bis(1,10-phenanthroline) complex and with multi-walled carbon nanotubes (MWCNTs). The nickel complex was electrodeposited on the MWCNTs by cyclic voltammetry. The modified GCE displays excellent electrocatalytic activity to the oxidation of ascorbic acid (AA). The effects of fraction of MWCNTs, film thickness and pH values were optimized. Response to AA is linear in the 10 to 630 μM concentration range, and the detection limit is 4 μM (at a signal-to-noise ratio of 3:1). The modified electrode was applied to determine AA in vitamin C tablets and in spiked fruit juice.
Graphical Abstract
A simple and sensitive ascorbic acid electrochemical sensor was fabricated by electrodepositing of nickel complex onto multi-walled carbon nanotubes/glassy carbon electrode. The sensor has high selectivity, rapid current response, is easy to construct and can be utilized for ascorbic acid determination.  相似文献   

18.
A new approach is described for the photoelectrocatalytic oxidation of Reduced ß-Nicotinamide Adenine Dinucleotide (NADH). It is based on a glassy carbon electrode (GCE) modified with a film of poly-Neutral Red (poly-NR) that is obtained by electropolymerization. Electrochemical measurements revealed that the modified electrode displays electrocatalytic and photo-electrocatalytic activity towards oxidation of NADH. If irradiated with a 250-W halogen lamp, the electrode yields a strongly increased electrocatalytic current compared to the current without irradiation. Amperometric and photo-amperometric detection of NADH was performed at +150 mV vs. Ag/AgCl/KClsat and the currents obtained are linearly related to the concentration of NADH. Linear calibration plots are obtained in the concentration range from 1.0 μM to 1.0 mM for both methods. However, the slope of the current-NADH concentration curve of the photo-electrocatalytic procedure was 2-times better than that obtained without irradiation.
Figure
A poly-Neutral Red modified glassy carbon electrode (poly-NR/GCE) was prepared by electropolymerization process. This modified electrode displays electrocatalytic and also photoelectrocatalytic activity towards oxidation of NADH. Compared with electrocatalytic oxidation of NADH, the current response was increased about 2.0 times in the photoelectrocatalytic oxidation process.  相似文献   

19.
The surface of a glassy carbon electrode (GCE) was modified by electropolymerization of acridine red followed by drop-coating of graphene. The morphology was characterized by scanning electron microscopy. Uric acid (UA) is effectively accumulated on the surface of the modified electrode and generates a sensitive anodic peak in solutions of pH 6.5. Differential pulse voltammetry was used to evaluate the electrochemical response of the modified GCE to UA. Compared to the bare GCE, the GCE modified with acridine red, and to the graphene modified electrode, the new GCE displays high electrochemical activity in giving an oxidation peak current that is proportional to the concentration of UA in the range from 0.8 to 150?μM, with a detection limit of 0.3?μM (at an S/N of 3). The modified electrode displays excellent selectivity, sensitivity, and a wide linear range. It has been applied to the determination of UA in real samples with satisfactory results.
Figure
The surface of a glassy carbon electrode was modified by electropolymerization of acridine red onto its surface and then covering it with graphene dropped. The graphene-poly(acridine red) modified electrode displays high electrochemical activity in giving an oxidation peak current that is proportional to the concentration of uric acid in a certain range.  相似文献   

20.
This work described a novel sensor for detection of l -tryptophan (Trp) by electrodeposition of gold nanoparticles (AuNPs) onto the poly(alizarin red S) film pre-cast on a glassy carbon electrode (GCE). Alizarin red S (ARS) was deposited on the surface of the GCE by electropolymerization, and gold nanoparticles (AuNPs) were attached onto the poly(ARS) film by electrodeposition, forming an AuNPs–PARS nanocomposite film-modified GCE (AuNPs–PARS/GCE). Then electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were used to characterize modified electrodes. The Nyquist diagrams of EIS indicated that the PARS film and AuNPs were successfully immobilized on the surface of GCE, and the electron transfer resistance value of electrode changed efficiently. The SEM image showed that the immobilized AuNPs were spherical in shape. The AuNPs–PARS/GEC displayed excellent amperometric response for Trp. The amperometric responses have two linear ranges from 0.02 to 0.5 μM and 0.5 to 20.0 μM, with sensitivities of 1.63(±0.08) and 0.21(±0.01)?μAμM?1, respectively. Its detection limit was 6.7 nM at a signal-to-noise ratio of 3. The proposed method was applied to determine Trp.
Figure
The procedure of the L-tryptophan sensor preparation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号