共查询到17条相似文献,搜索用时 51 毫秒
1.
令G是一个简单连通图,ρ(G)和q~D(G)分别为图G的邻接谱半径和距离无符号拉普拉斯谱半径.提供了图G是哈密顿连通的两个新的谱充分条件,这两个充分条件分别是以ρ(G)和q~D(G)表示的,其中G是G的补图.进一步地,还给出了以q~D(G)表示的图G是从任意一点出发都是可迹的新的谱充分条件,从而扩展和改进了文献中的结果. 相似文献
2.
3.
连通图$G$的距离无符号拉普拉斯矩阵定义为$mathcal{Q}(G)=Tr(G)+D(G)$, 其中$Tr(G)$和$D(G)$分别为连通图$G$的点传输矩阵和距离矩阵. 图$G$的距离无符号拉普拉斯矩阵的最大特征值称为$G$的距离无符号拉普拉斯谱半径. 本文确定了给定点数的双圈图中具有最大的距离无符号拉普拉斯谱半径的图. 相似文献
4.
Let G be a simple graph. We first show that ■, where δiand di denote the i-th signless Laplacian eigenvalue and the i-th degree of vertex in G, respectively.Suppose G is a simple and connected graph, then some inequalities on the distance signless Laplacian eigenvalues are obtained by deleting some vertices and some edges from G. In addition, for the distance signless Laplacian spectral radius ρQ(G), we determine the extremal graphs with the minimum ρQ(G) among the trees with given diameter, the unicyclic and bicyclic graphs with given girth, respectively. 相似文献
5.
The Q-index of a graph G is the largest eigenvalue q(G) of its signless Laplacian matrix Q(G). In this paper, we prove that the wheel graph W_n = K_1 ∨C_(n-1)is the unique graph with maximal Q-index among all Halin graphs of order n. Also we obtain the unique graph with second maximal Q-index among all Halin graphs of order n. 相似文献
6.
令A(G)=(a_(ij))_(n×n)是简单图G的邻接矩阵,其中若v_i-v_j,则a_(ij)=1,否则a_(ij)=0.设D(G)是度对角矩阵,其(i,i)位置是图G的顶点v_i的度.矩阵Q(G)=D(G)+A(G)表示无符号拉普拉斯矩阵.Q(G)的最大特征根称作图G的无符号拉普拉斯谱半径,用q(G)表示.Liu,Shiu and Xue[R.Liu,W.Shui,J.Xue,Sufficient spectral conditions on Hamiltonian and traceable graphs,Linear Algebra Appl.467(2015)254-255]指出:可以通过复杂的结构分析和排除更多的例外图,当q(G)≥2n-6+4/(n-1)时,则G是哈密顿的.作为论断的有力补充,给出了图是哈密顿图的一个稍弱的充分谱条件,并给出了详细的证明和例外图. 相似文献
7.
假设图G的点集是V(G)={v_1,v_2,…,v_n},用d_(v_i)(G)表示图G中点v_i的度,令A(G)表示G的邻接矩阵,D(G)是对角线上元素等于d_(v_i)(G)的n×n对角矩阵,Q(G)=D(G)+A(G)是G的无符号拉普拉斯矩阵,Q(G)的最大特征值是G的无符号拉普拉斯谱半径.现确定了所有点数为n的三圈图中无符号拉普拉斯谱半径最大的图的结构. 相似文献
8.
无向图G是简单连通图,且最小度为δ.如果G中包含一条生成路,则G是可迹的.无向图G的叶子数L(G)是G中生成树所含的叶子数的最大数.基于L(G)和δ,证明了一个充分条件使得无向图G是可迹的,即设G为连通图,最小度为δ≤4.若δ≥1/2(L(G)+2),G是可迹的. 相似文献
9.
10.
令G是一个简单连通图.如果连通图G被删除少于k条边后仍然保持连通,则称G是k-边连通的.基于图G或补图■的距离谱半径,距离无符号拉普拉斯谱半径,Wiener指数和Harary指数,提供了图G是k-边连通的新充分谱条件,从而建立了图的代数性质与结构性质之间的紧密联系. 相似文献
11.
Qiannan Zhou 《Linear and Multilinear Algebra》2017,65(11):2316-2323
In this paper, we establish a sufficient condition on distance signless Laplacian spectral radius for a bipartite graph to be Hamiltonian. We also give two sufficient conditions on distance signless Laplacian spectral radius for a graph to be Hamilton-connected and traceable from every vertex, respectively. Furthermore, we obtain a sufficient condition for a graph to be Hamiltonian in terms of the distance signless Laplacian spectral radius of the complement of a graph G. 相似文献
12.
Qiannan Zhou 《Linear and Multilinear Algebra》2017,65(2):224-234
In this paper, we establish some sufficient conditions for a graph to be Hamilton-connected in terms of the edge number, the spectral radius and the signless Laplacian spectral radius of the graph. Furthermore, we also give some sufficient conditions for a graph to be traceable from every vertex in terms of the edge number, the spectral radius and the signless Laplacian spectral radius. 相似文献
13.
In this paper,we determine the unique graph with the largest signless Laplacian spectral radius among all the tricyclic graphs with n vertices and k pendant vertices. 相似文献
14.
15.
In this paper,we determine the unique graph with the largest signless Laplacian spectral radius among all the tricyclic graphs with n vertices and k pendant vertices. 相似文献
16.
17.
Suppose that the vertex set of a graph G is . The transmission (or Di) of vertex vi is defined to be the sum of distances from vi to all other vertices. Let be the diagonal matrix with its (i, i)-entry equal to . The distance signless Laplacian spectral radius of a connected graph G is the spectral radius of the distance signless Laplacian matrix of G, defined as , where is the distance matrix of G. In this paper, we give a lower bound on the distance signless Laplacian spectral radius of graphs and characterize graphs for which these bounds are best possible. We obtain a lower bound on the second largest distance signless Laplacian eigenvalue of graphs. Moreover, we present lower bounds on the spread of distance signless Laplacian matrix of graphs and trees, and characterize extremal graphs. 相似文献