首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
膜生物反应器膜污染数学模型研究进展   总被引:3,自引:0,他引:3  
本文论述了膜生物反应器膜污染的影响因素、膜污染机理,阐述了膜污染数学模型的研究概况。最后,指出了活性污泥数学模型和人工神经网络在膜污染研究中的应用前景。  相似文献   

2.
膜生物反应器技术是近年新发展起来的污水处理技术.作者介绍了几种新型膜生物反应器(生物膜-膜生物反应器、动态膜-生物反应器、气升循环膜生物反应器、PAC-膜生物反应器)的发展状况,并对膜生物反应器的膜污染机理及其控制方法进行了探讨,对今后膜生物反应器的研究和发展进行了展望.  相似文献   

3.
4.
从膜的结构性质、反应器操作条件、处理液微生物性质三个方面介绍了膜生物反应器膜污染机理研究的进展,总结了优化膜生物反应器设计、调节膜生物反应器操作条件、在线超声控制、化学方法等膜污染控制的常用方法,对未来膜污染研究进行了展望。  相似文献   

5.
6.
膜生物反应器在水处理中的应用与新发展   总被引:16,自引:0,他引:16  
综合论述了膜生物反应器的分类、结构、特点,介绍了近年来各国学者应用膜生物反应器去除废水中有机物、氮、磷等污染物所取得的研究成果、面临的问题以及膜生物系统在实际废水处理中的应用。简要阐述了膜污染的成因、机理及其对策,并指出了现阶段限制膜生物技术在我国发展的原因,展望了未来膜生物技术在我国广阔的发展前景。  相似文献   

7.
膜生物反应器(MBR)是一种新型污水处理器,对生活污水处理效果显著,在使用过程中不可避免地会产生污染。为此,对膜生物反应器处理模拟生活污水的膜污染和清洗方法进行了研究,通过红外光谱分析了活性污泥性质的变化,利用扫描电镜分析了中空纤维膜表观结构的变化,探讨了膜污染的机理。结果表明,细菌滋生和污泥沉积造成了膜污染,泥饼层阻力占膜总阻力的89.86%,是膜污染的主要组成部分,水力清洗结合化学清洗可以很好地恢复膜的比通量。  相似文献   

8.
膜生物反应器中膜的污染与清洗   总被引:10,自引:0,他引:10  
通过不同清洗方法对膜通量恢复效果的评价以及对污染膜和各步清洗后对膜表面和断面形貌的观察,对膜生物反应器工艺中的膜污染特征和膜污染进行了研究。结果表明,清水冲洗能消除纤维膜之间淤积的污泥和膜表面松散的污染层,次氯酸钠可以清除膜表面的微生物和有机污染物,而硫酸和柠檬酸能清除膜上的无机物垢。在膜外表面的污染物主要为生物膜和凝胶层污染,而膜内表面的污染物主要为滋生的微生物和无机污染物。对应各步清洗后膜通量的恢复,可以推出,在试验的工艺条件下,无机物污染对膜过滤阻力的影响较大。在此基础上.为延缓膜污染对膜生物反应器提出三点建议.  相似文献   

9.
《水处理技术》2006,32(1):90-90
氯化脂肪族溶剂污染地下水和土壤是一普遍性问题。处理氯化溶剂污染水的一个很有希望的途径是通过在好氧生物反应器内共代谢,将氯化溶剂降解。然而,开发处理此类废水的生物反应器的困难是接触氯化溶剂或将氯化溶剂传送至细菌的种群中,以能进行生物降解。  相似文献   

10.
膜生物反应器的污染及防治   总被引:8,自引:0,他引:8  
控制膜生物反应器(MBR)的膜污染、提高膜清洗效率、延长膜运行周期,是影响MBR推广应用的至关重要的问题。现从膜、生物及运行条件等方面分析了膜污染的影响因素,并提出了MBR污染防治的相应措施。  相似文献   

11.
科技的进步使得很多新的技术在现实中的应用不断扩展,从目前实际的情况来看,在对油田机械能开发与生产时,会产生很多污水,但是对这些污水并没有很好的处理方式,对其处理不当还会产生更大的污染,很多污水并没有得到有效的利用,而被剩余。这就需要使用一些技术对其进行改进,可以借助一些先进的设备对油田污水膜机理等进行详细的研究,确定膜污染主要的因素,以便为我国油田的开发与生产提供借鉴。  相似文献   

12.
以一定通量下跨膜抽吸压力的变化来表征膜污染状况,分别考察了复合式膜生物反应器处理生活污水时抽停时间、曝气强度、悬浮污泥与附着污泥比例、膜通量对跨膜抽吸压力的影响。结果表明,在总污泥浓度为8g/L的情况下,适宜的抽吸时间为6min,抽停时间为5min,曝气强度为12 m~3/(m~2·h),悬浮污泥浓度与附着污泥浓度比为2:6,膜通量为20L/(m~2·h)。  相似文献   

13.
以硫酸溶液为萃取剂,采用PTFE中空纤维膜萃取料液中的对苯二胺,考察了料液相对苯二胺的初始浓度、料液相初始pH、料液相与萃取相流量、萃取剂的初始浓度对对苯二胺萃取率(η)的影响。结果表明,随着料液初始浓度增大,η增大,当对苯二胺浓度0.8 g/L时,η减小,但膜通量基本不变,即存在一个最大膜通量,此时对苯二胺浓度变化对传质无影响;对苯二胺料液的pH增大,η增大;萃取相硫酸浓度增大,η增大。另外,温度升高有利于膜萃取。  相似文献   

14.
陈建中  陈枫  吕文林 《广东化工》2014,(7):56-58,52
以氢氧化钠溶液为萃取剂,采用PTFE中空纤维膜萃取料液中的烟酸,考察了料液相烟酸的初始浓度、料液相初始pH值、料液相与萃取相流量比、萃取剂的初始浓度对烟酸萃取率(η)的影响。结果表明,随着料液初始浓度增大,η增大,当烟酸浓度0.9 g/L时,η减小,但膜通量基本不变,即存在一个最大膜通量,此时烟酸浓度变化对传质无影响;烟酸料液存在一个最佳pH值为4~5;萃取相氢氧化钠浓度增大,η增大;存在一个最佳相流量比(Q料/Q萃)为2.1;温度升高有利于膜萃取。  相似文献   

15.
中空纤维膜萃取镉离子的研究   总被引:3,自引:0,他引:3  
处理重金属离子水溶液是环境治理中的一个重要方面 ,应用新型膜萃取技术对去除水溶液中镉离子进行了研究。首先测定镉离子在不同萃取体系中的分配系数 ,选择合适的萃取剂 ,在中空纤维膜器中研究膜萃取去除镉离子的分离效果和传质特性 ,探讨不同装填因子、两相流速、水相初始浓度等实验条件对分离和传质的影响。实验结果表明 ,体积分数为 5 0 %的P2 0 4 正庚烷溶剂对于镉离子有较好的萃取效果。当装填因子为 0 .732 8时 ,经 33cm长的中空纤维膜器一级萃取可将溶液质量浓度由 40 0mg/L降至 0 .2mg/L以下 ,证明了膜萃取的高效性  相似文献   

16.
陈建中  陈枫  吕文林 《广东化工》2014,(5):36-37,34
以氢氧化钠溶液为萃取剂,采用PTFE中空纤维膜萃取料液中的苯甲酸,考察了料液相苯甲酸的初始浓度、料液相初始pH、料液相与萃取相流量比、萃取剂的初始浓度对苯甲酸萃取率(η)的影响。结果表明,随着料液初始浓度增大,η增大,当苯甲酸浓度1 g/L时,η减小,但膜通量基本不变,即存在一个最大膜通量,此时苯甲酸浓度变化对传质无影响;料液的pH值下降,η增大;萃取相氢氧化钠浓度增大,η增大;存在一个最佳相流量比(Q料/Q萃)为1.8。另外,温度升高有利于膜萃取。  相似文献   

17.
缺氧-厌氧-好氧工艺处理城市污水   总被引:1,自引:0,他引:1  
以缺氧、厌氧及好氧工段单元试验研究为基础,以城市污水为研究对象,将传统A2/O工艺厌氧/缺氧工段倒置,取消内回流,进行生物脱氮除磷的研究。考察了最佳工艺条件下,本工艺对城市污水中氮、磷及COD等污染物的去除状况。相对于A2/O工艺,本工艺的运行费用大大降低。从系统运行状况来看,经处理后的城市污水,其出水氮、磷及COD指标达到国家城市污水处理厂污染物排放标准(GB 18918-2002)一级标准,为更大规模的试验提供了基本的试验数据。  相似文献   

18.
中空纤维支撑液膜技术处理含铜废水   总被引:1,自引:0,他引:1  
重金属废水的处理在环境保护和重金属资源综合利用方面都受到广泛的关注.采用中空纤维支撑液膜技术,用CuSO4水溶液模拟工业含Cu(Ⅱ)废水,二(2-乙基己基)磷酸(D2EHPA)/煤油为液膜相,盐酸为接受相,研究了液膜相组成、两相流速、流动方式等因素对中空纤维支撑液膜过程传质性能的影响.结果表明,料液相在管程流动时的传质通量大于料液相在壳程流动时的传质通量,传质通量随着管、壳程两相流速的增大及液膜相中载体浓度的增加而增大.模拟实验结果表明,中空纤维支撑液膜技术可同时实现废水中Cu(Ⅱ)的去除与浓缩,处理效果好.废水中Cu(Ⅱ)的去除率达97%以上,富集液中Cu(Ⅱ)浓缩倍数达5倍以上.  相似文献   

19.
《中国化学工程学报》2014,22(11-12):1187-1192
Hollow fiber renewal liquid membrane (HFRLM) method was proposed based on the surface renewal theory for removal of aniline from waste water. The system of aniline + D2EHPA in kerosene + HCl was used. Aqueous layer diffusion in the feed phase is the rate-control step, and the influence of lumen side flow rate on the mass transfer is more significant than that on the shell side. The resistance of overall mass transfer is greatly reduced because of the mass transfer intensification in the renewal of liquid membrane on the lumen side. The driving force of mass transfer can be considered as a function of distribution equilibrium, and the overall mass transfer coefficient increases with the increase of pH in the feed solution, HCl concentration and D2EHPA concentration, and decreases with the increase of initial aniline concentration. A mass transfer model is developed for HFRLM based on the surface renewal theory. The calculated results agree well with experimental results. The HFRLM process is a promising method for aniline wastewater treatment.  相似文献   

20.
Membrane fouling seriously restricts applications of membrane technology. A novel strategy was ap-plied in this study to retard membrane fouling by changing operating pressure with the pressure responsibility membrane. A polyurethane-based hollow fiber membrane was used to treat surface water for evaluating the effect of operating pressure on membrane fouling. Some bench-scale tests in dead-end mode were carried out. In the experi-ments without backwashing, as operating pressure increased, severe membrane fouling occurred on membrane sur-face, while the permeate quality was improved obviously, which is considered to be due to shrinkage deformation. The total resistance, irreversible resistance and reversible resistance under different backwash pressures were de-termined in filtration/backwashing test. With the increase of backwash pressure, the total resistance decreased, and more importantly, the irreversible resistance also decreased, which implies that small particles deposited inside membrane pores and cake layers on membrane surface are effectively removed. Similar results could be obtained in mass balance tests. The results of the present study indicate that the application of pressure responsibility membrane in surface water treatment may be an effective strategy for reducing membrane fouling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号