首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of shear thinning on the stability of the Taylor–Couette flow is explored for a Carreau–Bird fluid in the narrow‐gap limit. The Galerkin projection method is used to derive a low‐order dynamical system from the conservation of mass and momentum equations. In comparison with the Newtonian system, the present equations include additional non‐linear coupling in the velocity components through the viscosity. It is found that the critical Taylor number, corresponding to the loss of stability of the circular Couette flow, becomes lower as the shear‐thinning effect increases. That is, shear thinning tends to precipitate the onset of Taylor vortex flow, which coincides with the onset of a supercritical bifurcation. Comparison with existing measurements of the effect of shear thinning on the critical Taylor and wave numbers show good agreement. The Taylor vortex cellular structure loses its stability in turn, as the Taylor number reaches a critical value. At this point, an inverse Hopf bifurcation emerges. In contrast to Newtonian flow, the bifurcation diagrams exhibit a turning point that sharpens with shear‐thinning effect. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
3.
A new interface capturing algorithm is proposed for the finite element simulation of two‐phase flows. It relies on the solution of an advection equation for the interface between the two phases by a streamline upwind Petrov–Galerkin (SUPG) scheme combined with an adaptive mesh refinement procedure and a filtering technique. This method is illustrated in the case of a Rayleigh–Taylor two‐phase flow problem governed by the Stokes equations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the authors treat the free‐surface waves generated by a moving disturbance with a constant speed in water of finite and constant depth. Specifically, the case when the disturbance is moving with the critical speed is investigated. The water is assumed inviscid and its motion irrotational. The surface tension is neglected. It is well‐known that the linear theory breaks down when a disturbance is moving with the critical speed. As a remedy to overcome the invalid linear theory, approximate non‐linear theories have been applied with success in the past, i.e. Boussinesq and Korteweg de Vries equations, for example. In the present paper, the authors describe a finite element method applied to the non‐linear water‐wave problems in two dimensions. The present numerical method solves the exact non‐linear formulation in the scope of potential theory without any additional assumptions on the magnitude of the disturbances. The present numerical results are compared with those obtained by other approximate non‐linear theories. Also presented are the discussions on the validity of the existing approximate theories applied to two types of the disturbances, i.e. the bottom bump and the pressure patch on the free‐surface at the critical speed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a Galerkin weighted residual finite element numerical solution method, with velocity material time derivative discretisation, is applied to solve for a classical fluid mechanics system of partial differential equations modelling two‐dimensional stationary incompressible Newtonian fluid flow. Classical examples of driven cavity laminar flow and laminar flow past a cylinder are presented. Numerical results are compared with data found in the literature. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a new set of boundary‐domain integral equations is derived from the continuity and momentum equations for three‐dimensional viscous flows. The primary variables involved in these integral equations are velocity, traction, and pressure. The final system of equations entering the iteration procedure only involves velocities and tractions as unknowns. In the use of the continuity equation, a complex‐variable technique is used to compute the divergence of velocity for internal points, while the traction‐recovery method is adopted for boundary points. Although the derived equations are valid for steady, unsteady, compressible, and incompressible problems, the numerical implementation is only focused on steady incompressible flows. Two commonly cited numerical examples and one practical pipe flow problem are presented to validate the derived equations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
The global linear stability analysis (LSA) of stationary/steady flows has been applied to various flows in the past and is fairly well understood. The LSA of time‐averaged flows is explored in this paper. It is shown that the LSA of time‐averaged flows can result in useful information regarding its stability. The method is applied to study flow past a cylinder at Reynolds number (Re) beyond the onset of vortex shedding. Compared with the direct numerical simulation, LSA of the Re=100 steady flow severely underpredicts the vortex shedding frequency. However, the LSA of the time‐averaged flow results in the correct value of the non‐dimensional frequency, St, of the associated instability. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A new numerical method for Nwogu's (ASCE Journal of Waterway, Port, Coastal and Ocean Engineering 1993; 119 :618)two‐dimensional extended Boussinesq equations is presented using a linear triangular finite element spatial discretization coupled with a sophisticated adaptive time integration package. The authors have previously presented a finite element method for the one‐dimensional form of these equations (M. Walkley and M. Berzins (International Journal for Numerical Methods in Fluids 1999; 29 (2):143)) and this paper describes the extension of these ideas to the two‐dimensional equations and the application of the method to complex geometries using unstructured triangular grids. Computational results are presented for two standard test problems and a realistic harbour model. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a numerical simulation of steady two‐dimensional channel flow with a partially compliant wall. Navier–Stokes equation is solved using an unstructured finite volume method (FVM). The deformation of the compliant wall is determined by solving a membrane equation using finite difference method (FDM). The membrane equation and Navier–Stokes equation are coupled iteratively to determine the shape of the membrane and the flow field. A spring analogy smoothing technique is applied to the deformed mesh to ensure good mesh quality throughout the computing procedure. Numerical results obtained in the present simulation match well with that in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Computation of a moving interface by the level‐set (LS) method typically requires reinitialization of LS function. An inaccurate execution of reinitialization results in incorrect free surface capturing and thus errors such as mass gain/loss so that an accurate and robust reinitialization process in the LS method is essential for the simulation of free surface flows. In the present study, we pursue further development of the reinitialization process, which directly corrects the LS function after advection is carried out by using the normal vector to the interface instead of solving the reinitialization equation of hyperbolic type. The Taylor–Galerkin method is adopted to discretize the advection equation of the LS function and the P1P1 splitting finite element method is applied to solve the Navier–Stokes equation. The proposed algorithm is validated with the well‐known benchmark problems, i.e. stretching of a circular fluid element, time‐reversed single‐vortex, solitary wave propagation, broken dam flow and filling of a container. The simulation results of these flows are in good agreement with previously existing experimental and numerical results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A space–time finite element method for the incompressible Navier–Stokes equations in a bounded domain in ?d (with d=2 or 3) is presented. The method is based on the time‐discontinuous Galerkin method with the use of simplex‐type meshes together with the requirement that the space–time finite element discretization for the velocity and the pressure satisfy the inf–sup stability condition of Brezzi and Babu?ka. The finite element discretization for the pressure consists of piecewise linear functions, while piecewise linear functions enriched with a bubble function are used for the velocity. The stability proof and numerical results for some two‐dimensional problems are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Flow computations frequently require unfavourably meshes, as for example highly stretched elements in regions of boundary layers or distorted elements in deforming arbitrary Lagrangian Eulerian meshes. Thus, the performance of a flow solver on such meshes is of great interest. The behaviour of finite elements with residual‐based stabilization for incompressible Newtonian flow on distorted meshes is considered here. We investigate the influence of the stabilization terms on the results obtained on distorted meshes by a number of numerical studies. The effect of different element length definitions within the elemental stabilization parameter is considered. Further, different variants of residual‐based stabilization are compared indicating that dropping the second derivatives from the stabilization operator, i.e. using a streamline upwind Petrov–Galerkin type of formulation yields better results in a variety of cases. A comparison of the performance of linear and quadratic elements reveals further that the inconsistency of linear elements equipped with residual‐based stabilization introduces significant errors on distorted meshes, while quadratic elements are almost unaffected by moderate mesh distortion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The unsteady compressible flow equations are solved using a stabilized finite‐element formulation with C0 elements. In 2D, the performance of three‐noded linear and six‐noded quadratic triangular elements is compared. In 3D, the relative performance is evaluated for 6‐noded linear and 18‐noded quadratic wedge elements. Results are compared for the solutions to Euler, laminar, and turbulent flows at different Mach numbers for several flow problems. The finite‐element meshes considered for comparison have same location of nodes for the linear and quadratic interpolations. For the turbulent flow, the Spalart–Allmaras model is used for closure. It is found that the quadratic elements yield better performance than the linear elements. This is attributed to accurate representation of the stabilization terms that involve second‐order derivatives in the formulation. When these terms are dropped from the formulation with quadratic interpolation, the numerical results are similar to those obtained with linear interpolation. The absence of these terms result in added numerical diffusion that seems to give the effect of a relatively reduced Reynolds number. For the same location of nodes, the computations with the linear triangular and wedge elements are approximately 20% and 100% faster than those with quadratic triangular and wedge elements, respectively. However, if the same quadrature rule for numerical integration is used for both interpolations, the computations with quadratic elements are approximately 20% and 45% faster in 2D and 3D, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The effect of wavelength and relative velocity on the disturbed interface of two‐phase stratified regime is modeled and discussed. To analyze the stability, a small perturbation is imposed on the interface. Growth or decline of the disturbed wave, relative velocity, and surface tension with respect to time will be discussed numerically. Newly developed scheme applied to a two‐dimensional flow field and the governing Navier–Stokes equations in laminar regime are solved. Finite volume method together with non‐staggered curvilinear grid is a very effective approach to capture interface shape with time. Because of the interface shape, for any time advancement, a new grid is performed separately on each stratified field, liquid, and gas regime. The results are compared with the analytical characteristics method and one‐dimensional modeling. This comparison shows that solving the momentum equation including viscosity term leads to physically more realistic results. In addition, the newly developed method is capable of predicting two‐phase stratified flow behavior more precisely than one‐dimensional modeling. It was perceived that the surface tension has an inevitable role in dissipation of interface instability and convergence of the two‐phase flow model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A high‐order Petrov–Galerkin finite element scheme is presented to solve the one‐dimensional depth‐integrated classical Boussinesq equations for weakly non‐linear and weakly dispersive waves. Finite elements are used both in the space and the time domains. The shape functions are bilinear in space–time, whereas the weighting functions are linear in space and quadratic in time, with C0‐continuity. Dispersion correction and a highly selective dissipation mechanism are introduced through additional streamline upwind terms in the weighting functions. An implicit, conditionally stable, one‐step predictor–corrector time integration scheme results. The accuracy and stability of the non‐linear discrete equations are investigated by means of a local Taylor series expansion. A linear spectral analysis is used for the full characterization of the predictor–corrector inner iterations. Based on the order of the analytical terms of the Boussinesq model and on the order of the numerical discretization, it is concluded that the scheme is fourth‐order accurate in terms of phase velocity. The dissipation term is third order only affecting the shortest wavelengths. A numerical convergence analysis showed a second‐order convergence rate in terms of both element size and time step. Four numerical experiments are addressed and their results are compared with analytical solutions or experimental data available in the literature: the propagation of a solitary wave, the oscillation of a flat bottom closed basin, the oscillation of a non‐flat bottom closed basin, and the propagation of a periodic wave over a submerged bar. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A new stabilized finite element method is considered for the time‐dependent Stokes problem, based on the lowest‐order P1?P0 and Q1?P0 elements that do not satisfy the discrete inf–sup condition. The new stabilized method is characterized by the features that it does not require approximation of the pressure derivatives, specification of mesh‐dependent parameters and edge‐based data structures, always leads to symmetric linear systems and hence can be applied to existing codes with a little additional effort. The stability of the method is derived under some regularity assumptions. Error estimates for the approximate velocity and pressure are obtained by applying the technique of the Galerkin finite element method. Some numerical results are also given, which show that the new stabilized method is highly efficient for the time‐dependent Stokes problem. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Numerical solutions of the shallow water equations can be used to reproduce flow hydrodynamics occurring in a wide range of regions. In hydraulic engineering, the objectives include the prediction of dam break wave propagation, fluvial floods and other catastrophic flooding phenomena, the modeling of estuarine and coastal circulations, and the design and optimization of hydraulic structures. In this paper, a well‐balanced explicit and semi‐implicit finite element scheme for shallow water equations over complex domains involving wetting and drying is proposed. The governing equations are discretized by a fractional finite element method using a two‐step Taylor–Galerkin scheme. First, the intermediate increment of conserved variable is obtained explicitly neglecting the pressure gradient term. This is then corrected for the effects of pressure once the pressure increment has been obtained from the Poisson equation. In order to maintain the ‘well‐balanced’ property, the pressure gradient term and bed slope terms are incorporated into the Poisson equation. Moreover, a local bed slope modification technique is employed in drying–wetting interface treatments. The proposed model is well validated against several theoretical benchmark tests. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Fringe element reconstruction technique for tracking the free surface in three‐dimensional incompressible flow analysis was developed. The flow field was calculated by the mixed formulation based on a four‐node tetrahedral element with a bubble function at the centroid (P1+/P1). Since an Eulerian approach was employed in this study, the flow front interface was advected by the flow through a fixed mesh. For accurate modelling of interfacial movement, a fringe element reconstruction method developed can provide not only an accurate treatment of material discontinuity but also surface tension across the interface. The effect of surface tension was modelled by imposing tensile stress directly on the constructed surface elements at the flow front interface. To verify the numerical approach developed, the developed algorithm was applied to two examples whose solutions are available in references. Good agreement was obtained between the simulation results and these solutions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly non‐linear and extremely dispersive water waves. The analysis demonstrates the near‐equivalence of classical linear Fourier (von Neumann) techniques with matrix‐based methods for formulations in both one and two horizontal dimensions. The matrix‐based method is also extended to show the local de‐stabilizing effects of the non‐linear terms, as well as the stabilizing effects of numerical dissipation. A comparison of the relative stability of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep‐water non‐linearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only moderately non‐normal, suggesting that the eigenvalues are likely suitable for analysis purposes. Numerical experiments demonstrate excellent agreement with the linear analysis, and good qualitative agreement with the local non‐linear analysis. The various methods of analysis combine to provide significant insight into the numerical behaviour of this rather complicated system of non‐linear PDEs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
A study of spurious currents in continuous finite element based simulations of the incompressible Navier–Stokes equations for two‐phase flows is presented on the basis of computations on a circular drop in equilibrium. The conservative and the standard level set methods are used. It is shown that a sharp surface tension force, expressed as a line integral along the interface, can give rise to large spurious currents and oscillations in the pressure that do not decrease with mesh refinement. If instead a regularized surface tension representation is used, exact force balance at the interface is possible, both for a fully coupled discretization approach and for a fractional step projection method. However, the numerical curvature calculation introduces errors that cause spurious currents. Different ways to extend the curvature from the interface to the whole domain are discussed and investigated. The impact of using different finite element spaces and stabilization methods is also considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号