首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Seed oils from four legume cultivars of Vicia faba, grown in Japan, were extracted and classified by thin-layer chromatography (TLC) into eight fractions. The major lipid components were triacylglycerols (TAG: 48.8–50.1%) and phospholipids (PL: 47.5–50.5%), while hydrocarbons (HC), steryl esters (SE), free fatty acids (FFA), diacylglycerols (1,3- and 1,2-DAG) and monoacylglycerols (MAG) were present in minor proportions (1.8–2.4%). All lipid samples had high amounts of total unsaturated FA, representing 79.7–82.8% and 77.6–79.7% for TAG and PL, respectively. Molecular species and FA distributions of TAG, isolated from the total lipids in the broad beans, were analyzed by a combination of argentation-TLC and GC. Fourteen different molecular species were detected. With a few exceptions, the main TAG components were S2D (6.1–8.9%), SD2 (7.8–10.5%), SMT (6.3–8.5%), M2D (4.5–6.2%), MD2 (18.9–21.8%), D3 (21.0–23.9%) and MDT (8.1–10.2%) (where S, M, D, and T denote a saturated fatty acid, a monoene, a diene, and a triene, respectively). These results suggest that the lipid classes, FA distributions and TAG molecular species of broad beans are not dependent on the cultivation areas during the growing season.  相似文献   

2.
The FA composition in the sn-2 position of TAG is routinely determined after porcine pancreatic lipase hydrolysis. However, the content of saturated FA increased when a pancreatic lipase preparation with higher specific activity was used. Lipase from Rhizopus delemar was selected as a potential replacement lipase for the following reasons: (i) The FA specificity is nearly equivalent in hydrolysis activity toward FA such as lauric, myristic, palmitic, palmitoleic, stearic, oleic, linoleic, and α-linolenic acids; and (ii) lipase from R. delemar hydrolyzes fatty acyl residues at the sn-1,3 positions of TAG. Acyl migration products were present at less than 0.8% in lipase hydrolysates containing 6–14% of sn-2 MAG. A reproducibility CV of less than 5% was obtained in a collaborative study in which the compositions of the main FA at the sn-2 position in olive oil were determined using lipase from R. delemar. This article was presented in part at the Biocatalysis Symposium, 94th AOCS Annual Meeting & Expo, Kansas City, Missouri, May 2003.  相似文献   

3.
Regiospecific distributions of fatty acids of triacylglycerols (TAG) and phospholipids (PL) separated from broad beans (Vicia faba) of four cultivars (Minpo, Sanuki, Nintoku and Sanren) were investigated. The major lipid components were PL (47.5–50.5 wt‐%) and TAG (47.7–50.1 wt‐%), while steryl esters, hydrocarbons, free fatty acids, diacylglycerols and monoacylglycerols were present in minor proportions (1.6–2.4 wt‐%). The PL components isolated from the four cultivars were phosphatidylcholine (56.4–58.4 wt‐%), phosphatidylethanolamine (20.3–21.7 wt‐%) and phosphatidylinositol (16.6–18.6 wt‐%). Phosphatidylinositol was unique in that it had the highest saturated fatty acid content among these PL. The principal characteristics of the fatty acid distribution in the TAG and PL were evident in the beans: Unsaturated fatty acids were predominantly concentrated in the sn‐2 position while saturated fatty acids primarily occupied the sn‐1 or sn‐3 position in these lipids. The lipid components and fatty acid distributions were almost the same in the four cultivars and were not influenced by genetic variability and planting location. These results could be useful information to both consumers and producers for the manufacture of traditional broad bean foods in Japan.  相似文献   

4.
Cansell M  Nacka F  Combe N 《Lipids》2003,38(5):551-559
Liposomes made from an extract of natural marine lipids and containing a high n-3 PUFA lipid ratio were envisaged as oral route vectors for FA supplements in order to increase PUFA bioavailability. The absorption of FA in thoracic lymph duct-cannulated rats, after intragastric feeding of dietary fats in the form of liposomes or fish oil, was compared. Lipid and FA analyses were also performed on feces. Five mole percent α-tocopherol was added to fish oil and incorporated into the liposome membrane. The influence of α-tocopherol on FA lymph recovery was also investigated. In vivo, FA absorption in rats was favored by liposomes (98±1%) compared to fish oil (73±6%). In the same way, the DHA proportion in lymph was higher after liposome ingestion (78%) than after fish oil ingestion (47%). However, phospholipid (PL) concentration in lymph was not affected by the kind of dietary fat ingested, suggesting a PL regulation due to de novo TAG synthesis. The influence of the intramolecular distribution of n-3 PUFA in dietary lipids (TAG and PL) on the intramolecular FA distribution in TAG of chylomicrons was also investigated. The results obtained showed that the distribution of n-3 PUFA esterified on the sn-2 of chylomicron TAG depended on the lipid source administered. All these results correlated, at least partly, with in vitro liposome behavior under conditions that mimic those of the gastrointestinal tract. As a whole, this study pointed out that marine PL may constitute an attractive material for the development of liposomes as oral PUFA supplements.  相似文献   

5.
TAG of butterfat were fractionated according to the type and degree of unsaturation into six fractions by silver-ion HPLC. The fractions containing TAG with either cis-or trans-monoenoic FA were collected and fractionated further by reversed-phase HPLC to obtain fractions containing cis TAG of ACN:DB (acyl carbon number:double bonds) 48∶1, 50∶1, and 52∶1 as well as trans 48∶1, 50∶1, and 52∶1. The FA compositions of these fractions were elucidated by GC. The MW distribution of each fraction was determined by ammonia negative-ion CI-MS. Each of the [M-H] parent ions was fractionated further by collision-induced dissociation with argon, which gave information on the location of cis-and trans-FA between the primary and secondary positions of TAG. The results suggest that the sn-positions of the monoenoic cis-and trans-FA depend on the two other FA present in the molecule. With 14∶0 FA in the TAG molecule, the 18∶1 FA in the sn-2 position are mostly present as cis-isomers. When there is no 14∶0 in the TAG molecule, the trans-18∶1 isomers seem to be more common in the sn-2 position. Also when other long-chain FA are present, the trans-isomers are more likely to be located in the secondary (sn-2) position.  相似文献   

6.
Soybean embryonic axes were separated from other tissues, i.e., the cotyledons and seed coat. The molecular species and FA distribution of TAG isolated from total lipids in the embryonic axes were analyzed by a combination of argentation-TLC and GC, and were investigated in relation to their tocopherol distribution, which was determined by HPLC. The dominant components were γ-tocopherols, with much smaller amounts of α-, β-, and δ-tocopherols. A modified argentation-TLC procedure, developed to optimize the separation of the complex mixture of total TAG, provided 16 different groups of TAG, based on both the degree of unsaturation and the total acyl-chain length of FA groups. With a few exceptions, the major TAG components were S2D (6.8–10.3%), SMD (6.9–11.2%), SD2 (7.2–9.8%), SMT (3.2–7.4%), SDT (11.5–19.5%), D3 (3.5–8.3%), MDT (4.5–7.7%), D2T (11.1–20.6%), and DT2 (8.2–15.7%) (where S denotes saturated FA, M denotes monoenes, D denotes dienes, and T denotes trienes). These results indicate that there were significant differences (P<0.05) not only in tocopherol distribution but also in the molecular species of TAG among the four cultivars. Therefore, these tissues should be made available as raw materials for soybean-germ oil or soy milk, based on the differences in the distributions of tocopherol homologs and the molecular species of TAG within the embryonic axes.  相似文献   

7.
Extracted lipids obtained from Jack beans (white and red) were fractionated by TLC into nine subfractions. The major components were TAGs (TAG: 43.8–45.7 wt%) and phospholipids (PL: 46.7–47.0 wt%), while other components were also present in minor proportions (0.3–2.7 wt%). The principal fatty acids (FA) are generally palmitic (18.8–28.8%), stearic (0.7–6.8%), oleic (42.0–51.8%), linoleic (16.2–22.8%), and α‐linolenic (3.0–8.2%) acids, the distribution of which differs according to these lipid classes. There were no significant differences (p>0.05) in the positional distribution of FA in the TAG; unsaturated FA (97.5%) were predominantly concentrated in the sn‐2 position while saturated FA (33.3%) primarily occupied the sn‐1 position or sn‐3 position. However, significant differences (p<0.05) in FA distribution existed when the individual PL were compared between the white and red beans. Based on the FA composition of these lipids, it seems that the two cultivars of Jack beans are very similar to each other with a few exceptions. The results could be useful to both producers and consumers for our daily diet to improve value of the Japanese diet. Practical applications : The lipid composition suggests that these beans could be a good source of nutraceuticals with providing heath benefits. The white and red beans may be well incorporated into our daily Japanese diets to improve nutritional value. The data obtained in this study provide valuable information for manufacturing functional drinks such as Jack bean tea in Japan.  相似文献   

8.
The distribution of FA between the sn-2 and sn-1,3 positions of TAG from Pistacia atlantica fruit oil of Algeria has been determined. Unsaturated FA showed a preference for the internal position. Linoleic and oleic acids occurred predominantly in the sn-2 position with lesser amounts evenly distributed between the sn-1 and sn-3 positions, as generally found in vegetable oils. The oil was found to contain TAG that were trisaturated (0.93%), disaturated (15.06%), monosaturated (44.64%), and triunsaturated (38.10%). The distribution of the TAG calculated using the lipase hydrolysis technique is slightly different from that determined with HPLC. This is particularly true for trioleoyl and trilinoleoylglycerols. In contrast, the agreement between theory and experiment is good for TAG containing two palmitoyl and one oleoyl, one oleoyl and two linoleoyl, and one palmitoyl and two oleoyl chains.  相似文献   

9.
Fatty acid (FA) compositions and molecular species of triacylglycerols (TAG) isolated from total lipids extracted from adzuki beans (Vigna angularis) were determined with a combination of AgNO3-TLC and GC, and were compared in relation to the content of endogenous antioxidants analyzed by HPLC. δ-Tocopherol was present in the highest concentration (53.7–89.3 mg/kg), and γ-tocopherol in small amounts (11.2–14.8 mg/kg). The main lipid components were phospholipids (72.2–73.4%) and TAG (20.6–21.9%), whilst other components were also present in minor proportions (0.1–3.4%). Eighteen different TAG molecular species were identified and quantified by successive applications of AgNO3-TLC and GC. The main components were SMD (4.6–5.0%), S2T (13.4–16.4%), SD2 (11.8–14.3%), SMT (7.3–8.3%), SDT (9.9–10.6%), D3 (6.9–7.9%), MT2 (5.2–6.3%), D2T (7.0–11.2%), DT2 (7.4–7.6%) and T3 (6.2–7.2%) (where S, M, D, and T denote a saturated FA, a monoene, a diene, and a triene, respectively). No marked difference (P > 0.05) in the molecular species composition could be observed among the five cultivars. The results could be useful to both consumers and producers for manufacturing traditional adzuki confectionaries in Japan and elsewhere.  相似文献   

10.
Alterations in chylomicron and VLDL TAG and the magnitude of postprandial lipemia were studied in healthy volunteers after two meals of equal FA composition but different TAG-FA positional distribution. Molecular level information of individual lipoprotein TAG regioisomers was obtained with a tandem MS method. The incremental area under the response curve of VLDL TAG was large (P=0.021) after modified lard than after lard. In plasma TAG, the difference did not quite reach statistical significance (P=0.086). In general, there were less TAG with palmitic acid in the sn-2 position and more TAG with oleic acid in the sn-2 position in chylomicrons than in fat ingested. From 1.5 to 8 h postprandially, the proportion of individual chylomicron TAG was constant or influenced by TAG M.W. VLDL TAG regioisomerism was similar regardless of the positional distribution of fat ingested. Significant alterations were seen in VLDL TAG FA, in M.W. fractions, and in individual regioisomers with respect to time. The TAG sn-14∶0-18∶1-18∶1+sn-18∶1-18∶1-14∶0, sn-16∶0-16∶1-18∶1+sn-18∶1-16∶1-16∶0, and sn-16∶1-18∶1-18∶1+sn-18∶1-18∶1-16∶1 decreased (P<0.05); and sn-16∶0-16∶0-18∶2+sn-18∶2-16∶0-16∶0, sn-16∶0-16∶0-18∶1+sn-18∶1-16∶0-16∶0, sn-16∶0-18∶1-16∶0, and sn-16∶0-18∶1-18∶2+sn-18∶2-18∶1-16∶0 increased (P<0.05) after both meals. In conclusion, positional distribution of TAG FA was found to affect postprandial lipid metabolism in healthy normolipidemic subjects.  相似文献   

11.
Extracted lipids from sesame (Sesamum indicum) seeds of three varieties were determined by high-performance liquid chromatography (HPLC) for endogenous antioxidants. The molecular species and fatty acid (FA) distribution of triacylglycerol (TAG) isolated from total lipids in sesame seeds were analyzed by a combination of argentation thin-layer chromatography (TLC) and gas chromatography (GC), and were investigated in relation to their antioxidant distribution. γ-Tocopherol was present in highest concentration, and δ-, and α-tocopherols were very small amounts. Sesamin and sesamolin were the main lignan components. A modified argentation-TLC procedure, developed to optimize the separation of the complex mixture of total TAG, provided 12 different groups of TAG, based on both the degree of unsaturation and the total acyl-chain length of FA groups. With a few exceptions, the major TAG components were SM2 (6.5–6.7%), SMD (19.8–20.7%), M2D (15.0–26.3%), MD2 (23.6–35.0%), and D3 (7.7–10.7%) (where S denotes a saturated FA, M denotes a monoene, D denotes a diene, and T denotes a triene). It seems that the three varieties were highly related to each other based on the FA composition of the TAG as well as the distribution pattern in the different TAG molecular species. These results suggest that there are no essential differences in the oil components among the three varieties.  相似文献   

12.
Ando Y  Oomi Y 《Lipids》2001,36(7):733-740
This paper presents the positional distribution of fatty acids in triacyl-sn-glycerols (TAG) of Artemia nauplii used in aquaculture as a live food for marine fish larvae. The nauplii were enriched with docosahexaenoic acid (DHA) ethyl ester (EE) in the form of gelatin-acacia microcapsules for 4, 18, and 24 h. TAG of the initial, enriched, and unenriched Artemia nauplii were subjected to stereospecific analysis. A remarkable increase of DHA content in the enriched Artemia TAG confirmed the view that DHA-EE is effectively assimilated and incorporated into the TAG fraction of Artemia nauplii. TAG of the nauplii enriched with 25 mg/L of DHA-EE contained DHA at concentrations of 5.9–6.8, 4.3–6.0, and 14.3–22.3 mol% in the sn-1, sn-2, and sn-3 positions, respectively. When the nauplii were enriched with 100 mg/L of DHA-EE, proportions of DHA in the sn-1, sn-2, and sn-3 positions were 5.2–8.6, 3.9–6.0, and 12.2–25.4 mol%, respectively. In all of the enriched Artemia, DHA was preferentially located in the sn-3 position followed in sequence by the sn-1 and sn-2 positions. The lower content of DHA in the sn-1 and sn-2 positions was consistent with low content of this acid in 1,2-diacyl-sn-glycerophospholipids. When fish larvae are reared on Artemia nauplii enriched with LL-type DHA oil, the larvae feed on DHA esterified in TAG with a positional distribution pattern similar to that of marine mammals (sn-3≫sn-1>sn-2) rather than that of fish or marine invertebrates (sn-2≫sn-3>sn-1).  相似文献   

13.
The liver oils of six shallow-water shark species, silky (Carcharhinus falciformis), thresher (Alopias superciliosus), oceanic whitetip (Carcharhinus longimanus), blue (Prionace glauca), hammerhead (Sphyrna lewini) and salmon (Lamna ditropis) were analyzed with particular attention to the regioisomeric composition of triacylglycerols (TAG). The TAG compositions were analyzed by using an HPLC-evaporative light scattering detector and each molecular species identified by HPLC-atmospheric pressure chemical ionization/mass spectrometry. Major lipid components of all sharks’ oils were TAG (~80 %) made up of omega-3 polyunsaturated fatty acids at 26–40 % and 20–25 % docosahexaenoic acid (DHA). Forty different molecular species were detected in the TAG fractions. TAG consisting of one palmitic acid, one DHA and one oleic acid (12.5–19.9 %) and TAG consisting of two palmitic acids and one DHA (8.4–15.4 %) were the predominant form while 30–50 % TAG molecular species were bound to one or more DHA. Distribution of fatty acids in the primary (sn-1 and sn-3) and secondary (sn-2) position of the glycerol backbones was examined by regiospecific analysis by using pancreatic lipase and it was found that DHA was preferentially positioned at sn-2. These findings greatly extend the utilization of shark liver oils in food productions and may have a significant impact on the future development of the fish oil industry.  相似文献   

14.
Stereoselective ethanolysis of monoacid TAG by immobilized Rhizomucor miehei lipase (RML) was studied for preparation of optically pure sn-2,3-DAG. Trioctanoylglycerol (TO) was used as a model substrate. The enantiomeric purity of the product, sn-2,3-dioctanoylglycerol (sn-2,3-DO), was very high (percent enantiomeric excess >99%) when an excess of ethanol was used. The result indicated that RML was highly stereoselective toward the sn-1 position of TO under conditions of excess ethanol. The stereoselectivity of RML depended on the amount of ethanol. The larger the amount of ethanol was, the higher the stereoselectivity became. After optimizing the parameters such as reactant molar ratio, water content, and temperature, (ethanol/TO molar ratio =31∶1 and water content =7.5 wt% of the reactants at 25°C), optically pure sn-2,3-DO was obtained at 61.1 mol% in the glyceride fraction in 20 min. The above conditions were further applied for ethanolysis of monoacid TAG with different acyl groups such as tridecanoylglycerol (C10∶0), tridodecanoylglycerol (C12∶0), tritetradecanoylglycerol (C14∶0) and trioctadecenoylglycerol [triolein, (C18∶1)]. The yields and enantiomeric purities of 1,2(2,3)-DAG were dramatically reduced when TAG with FA longer than decanoic acid were used.  相似文献   

15.
Seed oils from four legume cultivars of Pisum sativum, grown in Japan, were extracted and classified by thin‐layer chromatography (TLC) into seven fractions: hydrocarbons (HC; 0.5–0.9 wt‐%), steryl esters (SE; 0.8–2.4 wt‐%), triacylglycerols (TAG; 31.2–40.3 wt‐%), free fatty acids (FFA; 1.3–2.7 wt‐%), 1,3‐diacylglycerols (1,3‐DAG; 1.0–1.8 wt‐%), 1,2‐diacylglycerols (1,2‐DAG; 1.0–2.2 wt‐%) and phospholipids (PL; 52.2–61.3 wt‐%). All lipid samples had high amounts of total unsaturated fatty acids, representing 75.0–84.3 wt‐% for TAG and PL. Molecular species and fatty acid distributions of TAG, isolated from the total lipids in the peas, were analyzed by a combination of argentation‐TLC and GC. Eighteen different molecular species were detected. With a few exceptions, the main TAG components were SMD (7.5–10.3 wt‐%), M2D (8.0–8.9 wt‐%), SD2 (12.0–18.3 wt‐%), SMT (9.8–11.0 wt‐%), MD2 (12.0–20.3 wt‐%), SDT (9.7–10.8 wt‐%), M2T (2.5–7.3 wt‐%) and D3 (14.5–15.2 wt‐%) (where S denotes a saturated fatty acid, M denotes a monoene, D denotes a diene, and T denotes a triene). It seems that the four cultivars were highly related to each other based on the fatty acid composition of the TAG as well as the distribution profiles in the different TAG molecular species. In general, these results suggest that there are no essential differences (p >0.05) in the oil components among the four cultivars.  相似文献   

16.
The lipase-assisted acidolysis of high-laurate canola oil (HLCO; Laurical 25) with long-chain n−3 FA (DHA and EPA) was studied. Response surface methodology was used to obtain a maximal incorporation of DHA or EPA into HLCO. The studied process variables were the amount of enzyme (2–6%), reaction temperature (35–55°C), and incubation time (12–36 h). The amount of water added and the mole ratio of substrates (oil to DHA or EPA) were kept at 2% and 1∶3, respectively. All experiments were conducted according to a face-centered cube design. Under optimal conditions (4.79% of enzyme; 46.1°C; 30.1 h), the incorporation of DHA into HLCO was 37.3%. The corresponding maximal incorporation of EPA (61.6%) into Laurical 25 was obtained using 4.6% enzyme, a reaction temperature of 39.9°C, and a reaction period of 26.2 h. Examination of the positional distribution of FA on the glycerol backbone of modified HLCO with DHA showed that the DHA was primarily located in the sn-1,3 positions of the TAG molecules. However, lauric acid also remained mainly in the sn-1,3 positions of the modified oil. For EPA-modified Laurical 25, lauric acid was present mainly in the sn-1,3 positions, whereas EPA was randomly distributed over the three positions.  相似文献   

17.
Agren JJ  Kuksis A 《Lipids》2002,37(6):613-619
Normal-phase HPLC resolution of sn-1,2(2,3)- and x-1,3-DAG generated by partial Grignard degradation from natural TAG was carried out with both (R)-(−) and (S)-(+)-1-(1-naphthyl)ethylurethane derivatives. The diastereomeric sn-1,2- and sn-2,3-DAG derivatives were resolved using two Supelcosil LC-Si (5 μm, 25 cm × 4.6 mm i.d.) columns in series and an isocratic elution with 0.37% isopropanol in hexane at a flow rate of 0.7 mL/min. The DAG were detected by UV absorption at 280 nm and were identified by electrospray ionization MS in the positive ion mode following postcolumn addition of chloroform/methanol/30% ammonium hydroxide (75∶24.5∶0.5, by vol) at 0.6 mL/min. Application of the method to a stereospecific analysis of the molecular species of TAG of rat VLDL showed that the TAG composition of VLDL circulating under basal conditions differs markedly from that of VLDL secreted by the liver during inhibition of serum lipases. The inhibition of serum lipases resulted in a significant proportional decrease in 16∶0 and PUFA and an increase in 18∶0 and oligoenoic FA in the sn-1-position, whereas the FA compositions in the sn-2- and sn-3-positions were much less affected.  相似文献   

18.
Paterson LJ  Weselake RJ  Mir PS  Mir Z 《Lipids》2002,37(6):605-611
The content and positional distribution of CLA in TAG fractions of lamb tissues was examined with either preformed CLA or the linoleic acid precursor of CLA in the diet as experimental treatments. The CLA content of phospholipid (PL) from these tissues was also examined. Thirteen lambs were randomized to the following dietary treatments: (i) control diet (no supplement); (ii) CLA supplementation (0.33 g d−1 for 21 d prior to weaning) to milk-replacer of pre-ruminating lambs, or (iii) feeding linoleic acid-rich oil (6% safflower oil on a dry matter basis) to weaned ruminating lambs. At slaughter, tissue samples were procured from diaphragm, rib muscle, and subcutaneous (SC) adipose tissue. Safflower oil supplementation in the diet resulted in an increase in CLA content of the TAG from diaphragm, rib muscle, and SC adipose tissue by about threefold (P<0.05) on a mol% basis. CLA was localized to the sn-1/3 positions of TAG. Animals that received pre-formed CLA, however, had increased proportions of CLA at the sn-2 position of TAG from SC adipose tissue, suggesting that there were tissue-specific dietary effects and possible age-related effects on the mode of FA incorporation into TAG. Safflower oil supplementation in the diet had no effect on the CLA content of PL from diaphragm, rib muscle, and SC adipose tissue, suggesting that CLA was preferentially incorporated into the TAG of these tissues.  相似文献   

19.
Senanayake SP  Shahidi F 《Lipids》2002,37(8):803-810
Stereospecific analysis was carried out to establish positional distribution of FA in the TAG of DHA, EPA, and (EPA+DHA)-enriched oils. In this study, TAG of enzymatically modified oils were purified using a silicic acid column. The TAG were then subjected to positional distribution analysis using a modified procedure involving reductive cleavage with Grignard reagent. The results showed that in DHA-enriched borage oil (BO), DHA was randomly distributed over the three positions of TAG, whereas γ-linolenic acid (GLA) was mainly esterified at the sn-2 and-3 positions. In DHA-enriched evening primrose oil (EPO), however, DHA and GLA were concentrated in the sn-2 position. In EPA-enriched BO, EPA was randomly distributed over the three positions of TAG, similar to that observed for DHA. In EPA-enriched EPO, however, this FA was mainly located at the primary positions (sn-1 and sn-3) of TAG. In both oils, GLA was preferentially esterified at the sn-2 position. In (EPA+DHA)-enriched BO, EPA and DHA were mainly esterified at the sn-1 and -3 positions of TAG, whereas GLA was mainly located at the sn-2 position. In (EPA+DHA)-enriched EPO, GLA was mainly located at the sn-2 and-3 positions; EPA was preferentially esterified at the sn-1 and-3 positions, and DHA was found mainly at the sn-3 position.  相似文献   

20.
Seeds from different collections of cultivatedSesamum indicum Linn. and three related wild species [specifically,S. alatum Thonn.,S. radiatum Schum and Thonn. andS. angustifolium (Oliv.) Engl.] were studied for their oil content and fatty acid composition of the total lipids. The wild seeds contained less oil (ca. 30%) than the cultivated seeds (ca. 50%). Lipids from all four species were comparable in their total fatty acid composition, with palmitic (8.2–12.7%), stearic (5.6–9.1%), oleic (33.4–46.9%) and linoleic acid (33.2–48.4%) as the major acids. The total lipids from selected samples were fractionated by thin-layer chromatography into five fractions: triacylglycerols (TAG; 80.3–88.9%), diacylglycerols (DAG; 6.5–10.4%), free fatty acids (FFA; 1.2–5.1%), polar lipids (PL; 2.3–3.5%) and steryl esters (SE; 0.3–0.6%). Compared to the TAG, the four other fractions (viz, DAG, FFA, PL and SE) were generally characterized by higher percentages of saturated acids, notably palmitic and stearic acids, and lower percentages of linoleic and oleic acids in all species. Slightly higher percentages of long-chain fatty acids (20∶0, 20∶1, 22∶0 and 24∶0) were observed for lipid classes other than TAG in all four species. Based on the fatty acid composition of the total lipids and of the different acyl lipid classes, it seems thatS. radiatum andS. angustifolium are more related to each other than they are to the other two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号