首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asymmetric and symmetric aromatic triol isomers were synthesized from erucic acid. The pure asymmetric and symmetric triols were crosslinked with MDI into their corresponding polyurethane sheets. The physico‐chemical properties of these polyurethanes were studied by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermogravimetric analysis coupled with Fourier transform infrared (TGA‐FTIR) spectroscopy, and tensile analysis. The A‐PU and S‐PU demonstrated differences in their glass transition temperatures (Tg) and crosslinking densities. The difference in Tg of these polyurethanes could be explained by the differences in crosslinking densities, which could be related to the increase in steric hindrance, to the crosslinking MDI molecules, between adjacent hydroxyl groups of the asymmetric triol monomers. Overall, it was found that both polyurethanes had similar mechanical and thermal properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
A set of linear polyurethanes containing isosorbide units were synthesized by polymerization in solution from HDI and MDI diisocyanates and 1,4‐butanediol (BD), isosorbide (Is) or diisosorbide diurethanes (Is2HDI and Is2MDI) as diols. The thermal transitions, thermal stability, and crystal structure of the polyurethane homopolymers and copolymers containing isosorbide were evaluated and compared with those displayed by their polyurethane analogues entirely made of BD. It was found that incorporation of Is units in the polyurethane chain produced significant changes in Tg, Tm, and Td but no significant differences were noticed between copolymers made from Is or Is2 monomers. Degradation assays revealed that the presence of Is units increased slightly the hydrolysis rate of polyurethanes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Three series of polyurethanes were prepared having 42 wt % hard segments based on 4,4′-dicyclohexyl methane diisocyanate (H12MDI) with trans,trans isomer contents in the 13 to 95 mol % range and 1,4-butanediol chain extender. The soft segments were based on macrodiols poly(hexamethylene oxide) (PHMO, MW 696), α,ω-bishydroxyethoxypropyl polydimethylsiloxane (PDMS, MW 940), and two mixed macrodiol compositions consisting of 80 and 20% (w/w) PDMS. H12MDI with 35, 85, and 95% trans,trans isomer contents were obtained from commercial H12MDI (13% trans, trans) by fractional crystallization, and all polyurethanes were prepared by a one-step bulk polymerization procedure. The polyurethanes based on the commercial diisocyanate-produced materials soluble in DMF with molecular weights in the 53,655–75,300 range and generally yielded clear and transparent materials. The polyurethanes based on H12MDI with trans,trans contents of 35% or higher yielded materials insoluble in N,N-dimethylformamide (DMF) and were generally opaque. Mechanical properties, such as tensile strength and elongation at break, decreased with increasing trans,trans content, while the Young's modulus and Shore hardness increased. The polyurethanes based on mixed macrodiols yielded higher tensile properties than those of materials based on individual macrodiols. The best mechanical properties were observed for a polyurethane consisting of a soft segment based on PDMS–PHMO (80/20) and a hard segment based on commercial H12MDI and BDO. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the polyurethane morphology. DSC results confirmed that the polyurethanes based on H12MDI with high trans,trans isomer were very highly phase separated, exhibiting characteristic hard segment melting endotherms as high as 255°C. The other materials were generally phase mixed. FTIR spectroscopy results corroborated DSC results. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 573–582, 1999  相似文献   

4.
Summary Telechelic polyurethane cationomers containing end functional 4-vinylpyridinium moieties have been synthesized by the reaction of 4-vinylpyridine on 2-bromoethanol terminated polyurethane. The polyurethanes were characterized by FTIR, FTNMR and DSC studies. The introduction of ionic groups into the polyurethane shifts the Tg to lower temperatures, the shift in Tg further increases with increase in ionic groups.  相似文献   

5.
Active nonlinear optical nitro‐substituted thiazole, benzothiazole, and thiadiazole chromophores were prepared and condensed with tolylene‐2,4‐diisocyanate (TDI) and 4,4′‐methylenedi(phenyl isocyanate) (MDI) to yield a series of polyurethanes. The resulting polyurethanes were characterized with Fourier transform infrared, proton nuclear magnetic resonance, and ultraviolet–visible spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. The weight‐average molecular weights of the polyurethanes ranged between 19,500 and 28,000 (weight‐average molecular weight/number‐average molecular weight = 1.71–2.15). All the polyurethanes exhibited excellent solubility in most common organic solvents, and this indicated that these polyurethanes offered good processability. The glass‐transition temperatures (Tg's) of the polyurethanes were in the range of 166–204°C. Among the polyurethanes, chromophores containing the nitrothiazole moiety exhibited lower Tg values in comparison with those of chromophores containing nitrobenzothiazole and nitrothiadiazole moieties. This was attributed to the small size of the nitrothiazole moiety in the polyurethane matrix. The polyurethanes containing a TDI backbone demonstrated relatively high Tg values in comparison with those of the polyurethanes containing an MDI backbone. This was a result of an enhancement of the rigidity caused by the incorporation of a toluene ring into the polyurethane backbone. The second harmonic generation (SHG) coefficients of the poled polyurethane films ranged from 67.29 to 105.45 pm/V at 1064 nm. High thermal endurance of the poled dipoles was observed for all the polyurethanes. This was attributed to the formation of extensive hydrogen bonds between urethane linkages. Furthermore, none of the developed polyurethanes showed SHG decay below 150°C, and this signified their acceptability for nonlinear optical devices. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Novel thermoplastic polyurethanes with chelating groups were synthesized from 4,4′-diphenylmethane diisocyanate (MDI), poly(ethylene glycol) (PEG), and EP-IDA. Differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FT-IR), and impedance spectroscopy (IS) were used to monitor changes in the morphology of these polyurethanes with the concentration of lithium perchlorate (LiClO4) dopants. Adding the salt significantly changes the FTIR spectrum of the polyurethane, indicating an interaction between the lithium cation within the urethane group and the chelating group. The soft segment Tg increases with LiClO4 concentration, as determined by DSC, indicating that solubility of the lithium cation in the host polyurethane increases with the chelating groups. IS shows that the bulk conductivity reaches a maximum as the salt concentration is increased. One of the investigated polyurethane electrolytes has an ionic conductivity as high as ∼10−6 S cm−1 at room temperature.  相似文献   

7.
A type of bistriethoxysilane endcapped polyurethane/ureas (SPU) with well‐defined structure was synthesized from bis(triethoxysiylpropyl) amine and purified prepolymers, which were obtained from the reaction of 2,4‐toluene diisocyanate (TDI) and polyoxyethylene glycol (PEG) with different molecular weight. Then, fourier transform infrared spectroscopy (FTIR), hydrogen nuclearmagnetic resonance (1H‐NMR) and standard dibutylamine back‐titration method were used to confirm the structures of prepolymers and SPUs. Moreover, the properties of SPU were investigated by wide angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), and percentage of water uptake. Results indicated that these polyurethanes were amorphous, and the percentage of water uptake and thermal stability of these polyurethanes went up with the increase of M n of SPU, accompanying with the glass transition temperature (Tg) values decreased with the increase of M n. This study provides us with a method to synthesize well‐defined end‐functionalized polyurethane. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
A novel polyurethane material containing zwitterionic sulfobetaine groups has been synthesized using the copper‐catalyzed 1,3‐dipolar cycloaddition (azide‐alkyne click chemistry). A standard two‐step polyaddition method was used to produce the well‐defined polyurethane based on polycarbonatediol (PCDL) with alkyne groups. These polyurethanes containing alkyne units were then efficiently clicked using 3‐((2‐azidoethyl)dimethylammonio)propane‐1‐sulfonate (DMPS‐N3). The novel PU material was characterized by 1H NMR, Fourier transform infrared (FTIR) spectrometer, gel permeation chromatography (GPC), elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). This facile “click” reaction provides a useful tool for the development of novel functional polyurethanes for biomedical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Polyether(bisurethane‐bisurea‐bisamide)s (PEUUA) based on poly(tetramethylene oxide) (PTMO) were synthesized by chain extension of PTMO endcapped with a diisocyanate (DI), and a diamine–diamide extender. The prepolymers were PTMOs with molecular weights between 1270 and 2200 g mol?1, either endcapped with 4,4′‐diphenylmethane diisocyanate (MDI), 2,4‐toluene diisocyanate (2,4‐TDI), or 1,6‐hexane diisocyante (HDI) and with a low content of free diisocyanate (<0.1 wt %). The diamine–diamide (6A6) extender was based on hexamethylene diamine (6) and adipic acid (A). In this way, segmented polyurethanes with monodisperse rigid segments (DI‐6A6‐DI) were obtained. The PEUUAs were characterized by DSC as well as temperature‐dependent FTIR and DMTA. The mechanical properties of the polymers were evaluated by compression set and tensile test measurements. The polyurethanes with monodisperse rigid segments displayed low glass transition temperatures, almost temperature‐independent rubbery plateaus and sharp melting temperatures. The crystallinities of the hard segments were 70–80% upon heating and 40–60% upon cooling. The rate of crystallization was moderately fast as the supercooling (Tm ? Tc) was in the order 36–54°C. The polyurethanes based on HDI had a much higher rubber modulus as compared to the MDI and 2,4‐TDI‐based polymers, because of a higher degree of crystallinity and/or a higher aspect ratio of the crystallites. The HDI residues are flexible and not sterically hindered and could therefore be more easily packed than MDI or 2,4‐TDI residues. Polyurethanes with monodisperse DI‐6A6‐DI hard segments have interesting properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Polyurethane elastomers were synthesized using polypropylene glycol (PPG 2000) as the polyol and starch as the multifunctional crosslinker in varying concentrations. Thermal and mechanical properties were measured by DSC, DMA and tensile tests. The morphology was examined by SEM. The swelling behavior of the polyurethanes in various solvents was investigated and the solubility parameter was determined. All these properties were compared with those of polyurethanes containing 1,1,1 ‐trimethylol propane (TMP) as the crosslinker. Starch‐based polyurethanes exhibited better mechanical properties. The effect of varying the starch:TMP ratio on the mechanical strength was also studied. With increasing starch content, the tensile strength and elongation increased. The starch‐based PUs exhibited two glass transitions, whereas TMP‐based PUs exhibited one Tg. No significant difference in the Tgs of the two PUs was observed. The activation energy of St‐PU calculated from DMA was 69 kcal/mol. Soil degradation tests indicated greater biodegradability in polyurethanes containing starch than in those containing TMP.  相似文献   

11.
A series of biodegradable polylactide‐based polyurethanes (PLAUs) were synthesized using PLA diol (Mn = 3200) as soft segment, 4,4′‐diphenylmethane diisocyanate (MDI), 2,4‐toluene diisocyanate (TDI), and isophorone diisocyanate (IPDI) as hard segment, and 1,4‐butanediol as chain extender. The structures and properties of these PLAUs were studied using infrared spectroscopy, differential scanning calorimetry, tensile testing, and thermomechanical analysis. Among them, the MDI‐based PLAU has the highest Tg, maximum tensile strength, and restoration force, the TDI‐based PLAU has the lowest Tg, and the IPDI‐based PLAU has the highest tensile modulus and elongation at break. They are all amorphous. The shape recovery of the three PLAUs is almost complete in a tensile elongation of 150% or a twofold compression. They can keep their temporary shape easily at room temperature (20 °C). More importantly, they can deform and recover at a temperature below their Tg values. Therefore, by selecting the appropriate hard segment and adjusting the ratio of hard to soft segments, they can meet different practical demands for shape memory medical devices. Copyright © 2007 Society of Chemical Industry  相似文献   

12.
A series of biodegradable polyurethanes (PUs) are synthesized from the copolymer diols prepared from L ‐lactide and ε‐caprolactone (CL), 2,4‐toluene diisocyanate, and 1,4‐butanediol. Their thermal and mechanical properties are characterized via FTIR, DSC, and tensile tests. Their Tgs are in the range of 28–53°C. They have high modulus, tensile strength, and elongation ratio at break. With increasing CL content, the PU changes from semicrystalline to completely amorphous. Thermal mechanical analysis is used to determine their shape‐memory property. When they are deformed and fixed at proper temperatures, their shape‐recovery is almost complete for a tensile elongation of 150% or a compression of 2‐folds. By changing the content of CL and the hard‐to‐soft ratio, their Tgs and their shape‐recovery temperature can be adjusted. Therefore, they may find wide applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4182–4187, 2007  相似文献   

13.
In this study, two low‐molecular‐weight diurethanes were synthesized and blended with thermoplastic polyurethane (TPU). The effects of the incorporation on the thermal and rheological properties of TPU were evaluated. The diurethanes were obtained from the reaction of 4,4′‐diphenylmethane‐diisocyanate (MDI) with 1‐butanol (Additive 1) or 1‐octanol (Additive 2). Blending of the additives with TPU was carried out in a torque rheometer, and the blends obtained were analyzed by differential scanning calorimetry (DSC), torque rheometry, and capillary rheometry. The torque rheometry showed that an increase in the amount of both additives displaced the charging peaks to longer times and reduced the torque values after melting. The DSC analysis showed that the incorporation of the additives did not affect the glass transition temperature (Tg) of the flexible phase of TPU. However, an increase in the amount of Additive 1 led to a reduction in the Tg of the rigid phase, while increasing the amount of Additive 2 caused an increase in the Tg of this phase. Capillary rheometry results showed that blends with up to 2 wt % of additive led to intrinsic viscosity and melt‐flow stability values higher than those of processed TPU. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
This article demonstrates a comparative investigation about the effect of diisocyanate on pyridine containing shape memory polyurethanes (Py‐SMPUs), which are synthesized with N,N‐bis(2‐hydroxylethyl)isonicotinamide (BINA) and four different diisocyanates: 1,6‐hexanediisocyante (HDI), isophorone diisocyanate (IPDI), methylene diphenyl diisocyanate (MDI), and tolylene diisocyanate (TDI). Results show that all BINA–SMPU systems have amorphous reversible phase. Comparatively, the MDI–BINA and TDI–BINA systems show higher Tg; and the HDI–BINA and IPDI–BINA systems show better thermal stability. In addition, the HDI–BINA and the IPDI–BINA systems exhibit good thermal‐induced shape memory effect and good moisture‐sensitive shape memory effect due to their better moisture absorption properties. Particularly, the HDI–BINA system has better response speed and better shape recovery. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40721.  相似文献   

15.
Two families of rubbery polymers, commercial hydrogenated nitrile rubbers and synthesized poly(acrylonitrile‐co‐butadiene)‐based polyurethanes with different amount of nitrile groups were studied as CO2 selective membrane materials. The polymers were characterized by the techniques of FTIR, gel permeation chromatography, WAXD, and differential scanning calorimetry. The permeabilities of pure CO2 and N2 were measured using constant pressure/variable volume method at a feed pressure of 6 atm. With a higher amount of polar nitrile group within a given family of polymers, the permeability coefficient (P) was found to decrease, while the permselectivity (α) of these membranes was found to increase. The trade‐off between both transport parameters was less severe for the polyurethanes, which also showed much higher permeabilites. The results obtained were also discussed with respect to the polymer structure, and some relationships were found between P and Tg values. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Poly(methyl methacrylate)‐block‐polyurethane‐block‐poly(methyl methacrylate) tri‐block copolymers have been synthesized successfully through atom transfer radical polymerization of methyl methacrylate using telechelic bromo‐terminated polyurethane/CuBr/N,N,N,N″,N″‐pentamethyldiethylenetriamine initiating system. As the time increases, the number‐average molecular weight increases linearly from 6400 to 37,000. This shows that the poly methyl methacrylate blocks were attached to polyurethane block. As the polymerization time increases, both conversion and molecular weight increased and the molecular weight increases linearly with increasing conversion. These results indicate that the formation of the tri‐block copolymers was through atom transfer radical polymerization mechanism. Proton nuclear magnetic resonance spectral results of the triblock copolymers show that the molar ratio between polyurethane and poly (methyl methacrylate) blocks is in the range of 1 : 16.3 to 1 : 449.4. Differential scanning calorimetry results show Tg of the soft segment at ?35°C and Tg of the hard segment at 75°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
The effects of the species and content of a swelling agent on the molecular weight of poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) synthesized in an aqueous medium were studied. It was found that the molecular weight of PPO increases after introducing a certain amount of the swelling agent during the oxidative polymerization of 2,6‐dimethylphenol (DMP). Tg of the PPO/swelling agent mixture decreases with the increase of the swelling agent content, and the relation between Tg of the PPO/swelling agent mixture and the swelling agent content obeys Fox equation. After the introduction of the swelling agent during the oxidative polymerization of DMP, the molecular weight of PPO is correlated with Tg of the PPO/swelling agent mixture and it was revealed that Tg plays an important role in the molecular weight of PPO synthesized in the aqueous medium. The same molecular weight of PPO can be obtained only if Tg of the PPO/swelling agent mixture is the same, no matter what kind of swelling agent is introduced during the oxidative polymerization of DMP. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

18.
This article concerns the modification of polyurethane using polyamide 6,6 prepolymer to improve the dyeability properties of the polyurethane copolymer with acid dye. First, the carboxyl‐terminated polyamide 6,6 prepolymer was synthesized from adipic acid and 1,6‐diaminohexane. The isocyanate‐terminated polyurethane prepolymer was also synthesized from polytetramethylene glycol and 4,4′‐diphenylmethane diisocyanate in N,N‐dimethylformamide. The polyurethane prepolymer was then extended with a mixture of 1,4‐butanediol and the polyamide 6,6 prepolymer (molar ratios of 1,4‐butanediol to prepolymer being 100%, 75%, 50%, and 25%, respectively). Finally, the poly(urethane–amide) copolymers were dyed with acid dyes. The chemical, physical, and the dyeing properties of the poly(urethane–amide) coploymers are discussed. From the experimental results, it is found that the inherent viscosity of poly(urethane–amide) coploymers is increased with the increasing amount of polyamide content. The structure is proven by infrared spectra, which exhibits the absorption peaks of urethane and amide groups as we expected. From the differential scanning calorimetry measurements, it is found that the poly(urethane–amide) coploymers have two‐phase structures and good phase separation. There are four transition temperatures (Tgs, Tgh, Tms, and Tmh), but only those copolymers in PTMG 2,000 series possess Tms. Moreover, the Tgs is found to change with the length of soft segment, and the Tgh is increased with the increasing amount of polyamide content. Also, the dyed copolymers exhibit higher Tgh than those without dyeing of dye molecule, but the Tgs is not obviously changed. For mechanical properties, it is indicated that both the modulus and the strength of the coploymers are higher than those of unmodified polyurethane, but they are lowered after being dyed with dye molecule due to further separation of intermolecular distance of the dyed polyurethanes. For dye uptake in dyeing properties, it is found to increase with increasing amount of polyamide content. For dye fastness, the dyed copolymers exhibit higher grade of water fastness than that of unmodified polyurethane. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1397–1404, 2003  相似文献   

19.
In this study, a novel and simple route for the synthesis of the iodine isocyanate (INCO) adduct of soybean oil triglycerides is described. Soybean oil iodo isocyanate (ISONCO) was synthesized by the reaction of iodine isocyanate and soybean oil at room temperature. ISONCO was then polymerized with polyols, such as, castor oil, pentamethylene glycol, and glycerol to give the corresponding polyurethanes and with polyamines, such as, ethylene diamine, hexamethylene diamine, and triethylene tetramine to give corresponding polyureas. The structures of the monomer and the polymers were determined by FTIR and 1H‐NMR analyses. Thermal properties of the polymers were determined by DSC and TGA. Thermal degradation of the polyurethanes started at 150°C. Stability of the polyureas was higher than polyurethanes. Almost all polymers showed a Tg around ?50°C. The mechanical properties of the polymers were determined by tensile tests. Among the polymers synthesized, castor oil polyurethane showed the highest elongation at break and the lowest tensile strength of 140 KPa. The highest tensile strength of 900 KPa was observed in the pentamethylene glycol polyurethanes. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Poly(N‐isopropylacrylamide) (PNIPAAm)/poly(ethylene oxide) (PEO) semi‐interpenetrating polymer networks (semi‐IPNs) synthesized by radical polymerization of N‐isopropylacrylamide (NIPAAm) in the presence of PEO. The thermal characterizations of the semi‐IPNs were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). The melting temperature (Tm) of semi‐IPNs appeared at around 60°C using DSC. DEA was employed to ascertain the glass transition temperature (Tg) and determine the activation energy (Ea) of semi‐IPNs. From the results of DEA, semi‐IPNs exhibited one Tg indicating the presence of phase separation in the semi‐IPN, and Tgs of semi‐IPNs were observed with increasing PNIPAAm content. The thermal decomposition of semi‐IPNa was investigated using TGA and appeared at around 370°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3922–3927, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号