首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Heat‐denatured whey‐protein isolate (HD‐WPI) solutions were prepared by heating a 10 wt% WPI solution (pH 7) to 80 °C for 10 min and then cooling it back to 30 °C. Cold‐set gelation was initiated by adding either NaCl (0 to 400 mM) or CaCl2 (0 to 15 mM). Both salts increased the turbidity and rigidity of the HD‐WPI solutions. Gelation rate and final gel strength increased with salt concentration and were greater for CaCl2 than NaCl at the same concentration because the former is more effective at screening electrostatic interactions and can form salt bridges.  相似文献   

2.
Calcium chloride addition and the whey draining pH are known to impact on cheese making. The effect of 100 or 300 mg kg−1 calcium chloride (CaCl2) and the whey draining pH (6.2 or 6.0) on the microstructure of Cheddar cheese was assessed using confocal and cryo scanning electron microscopy. The gel made with 300 mg kg−1 CaCl2 was found to have a denser protein network and smaller pores than the gel with lower or no CaCl2 addition. CaCl2 addition reduced fat lost to the sweet whey. The texture of the cheeses with a lower draining pH was harder and moisture content lower. Our results show that the combination of calcium addition and lower draining pH could be used to increase network formation at the early stages of cheese making to improve fat retention while maintaining a similar level of total calcium in the final cheese.  相似文献   

3.
This paper reports the cold gelation of preheated emulsions stabilized by whey protein, in contrast to, in previous reports, the cold gelation of emulsions formed with preheated whey protein polymers. Emulsions formed with different concentrations of whey protein isolate (WPI) and milk fat were heated at 90 °C for 30 min at low ionic strength and neutral pH. The stable preheated emulsions formed gels through acidification or the addition of CaCl2 at room temperature. The storage modulus (G′) of the acid-induced gels increased with increasing preheat temperature, decreasing size of the emulsion droplets and increasing fat content. The adsorbed protein denatures and aggregates at the surface of the emulsion droplets during heat treatment, providing the initial step for subsequent formation of the cold-set emulsion gels, suggesting that these preheated emulsion droplets coated by whey protein constitute the structural units responsible for the three-dimensional gel network.  相似文献   

4.
The Maillard conjugation of proteins and reducing saccharides is used to modify the technological functionality of whey proteins. In this study, whey protein isolate (WPI) was conjugated with maltodextrin (at 1:1 ratio and two total solid contents of 100 and 200 mg mL−1) through the Maillard reaction and used to form cold-set gels. The glycation reaction increased the strength of hydrogen bonding of whey proteins and preferentially modified α-lactalbumin, in comparison with β-lactoglobulin. It also increased the reducing power of binary protein-saccharide solution and allowed formation of self-standing cold-set WPI gel at a low protein content (i.e., ≈50 mg mL−1). Microscopic imaging showed micro-phase separated maltodextrin domains, interrupting the protein network, in gels made of protein-maltodextrin physical mixtures, whereas Maillard conjugation resulted in more homogenous microstructures at both total solid contents. The Maillard reaction increased gel firmness and water-holding capacity and caused a reduction in the extent of gel swelling.  相似文献   

5.
Fluorescence spectroscopy was used to investigate the interaction between resveratrol and whey proteins. The whey proteins examined were lactoferrin, holo‐lactoferrin, apo‐lactoferrin, whey protein isolate (WPI) and the β‐lactoglobulin‐ and α‐lactalbumin‐rich fractions of WPI. Both an analytical‐grade and food‐grade resveratrol were examined. In all the systems studied, it was found that resveratrol interacted with the whey proteins to form a 1:1 complex. The binding constant, Ks, for the protein–resveratrol complex for all the proteins examined varied from 1.7 × 104 to 1.2 × 105 m ?1. Furthermore, the interaction between the whey proteins and resveratrol did not affect the secondary structure of the proteins.  相似文献   

6.
Addition of CaCl2 to pre-heated whey protein isolate (WPI) suspensions caused an increase in turbidity when pre-heating temperatures were ≥ 64°C. Pre-heating to ≥ 70°C was required for gelation. WPI suspensions which contained CaCl2 became turbid at 45°C and formed thermally induced gels at 66°C. Thermally and Ca2+-induced gels showed significant time/temperature effects but the penetration force values in the Ca2+-induced gels were always lower. However, Ca2+-induced gels were higher in shear stress at fracture. The Ca2+-induced gels had a fine-stranded protein matrix that was more transparent than the thermally induced gels, which showed a particulate microstructure.  相似文献   

7.
Mixed cold-set whey protein isolate (WPI)–flaxseed gum (FG) gels, induced by the addition of CaCl2 or NaCl at fixed ionic strength (150 mM), were evaluated with respect to their mechanical properties, water-holding capacity (WHC) and SEM microscopy. They were prepared by mixing FG and thermally denatured (90 °C/30 min) WPI solutions at room temperature, but the gels were formed at 10 °C using two methods of salt incorporation: diffusion through dialysis membranes and direct addition. The mixed systems formed using dialysis membranes showed phase separation with the development of two (axial) layers, and the CaCl2-induced gels presented radial phase separation. In general the CaCl2-induced gels were less discontinuous, stronger, and showing lower WHC and deformability than the NaCl-induced gels. An increase in the FG concentration reduced the gel strength and WHC for both systems, which was associated with a prevailing phase separation between the biopolymers over the gelation process. Using direct salt addition, apparently none of the mixed gels showed macroscopic phase separation, but the NaCl-induced gels showed much higher hardness and elasticity than the CaCl2-induced gels. Since the gelation process occurred more quickly by direct salt addition, and more effectively for the divalent salts, the more fragile structure of the CaCl2-induced gels was a consequence of disruption of the cross-link interactions of the aggregates during the agitation used to homogenize the salt added.  相似文献   

8.
Ten commercial samples of dry dairy products used for protein fortification in a low fat yoghurt model system at industrial scale were studied. The products employed were whey protein concentratres, milk protein concentrates, skimmed milk concentrates and skimmed milk powder which originated from different countries. The gross chemical composition of these dried products were determined, including polyacrylamide gel electrophoresis (SDS‐PAGE) and isoelectric focusing of the proteins, and minerals such as Na, Ca, K and Mg. Yoghurts were formulated using a skim milk concentrated as a milk base enriched with different dry dairy products up to a 43 g kg−1 protein content. Replacement percentage of skim milk concentrated by dry dairy products in the mix was between 1.49 and 3.77%. Yoghurts enriched with milk protein concentrates did not show significantly different viscosity (35.12 Pa s) and syneresis index (591.4 g kg−1) than the two control yoghurts obtained only from skimmed milk concentrates (35.6 Pa s and 565.7 g kg−1) and skimmed milk powder (32.77 Pa s and 551.5 g kg−1), respectively. Yoghurt fortified with the whey protein concentrates, however, was less firm (22.59 Pa s) and had less syneresis index (216 g kg−1) than control yoghurts. Therefore, whey protein concentrates may be useful for drinking yoghurt production. © 1999 Society of Chemical Industry  相似文献   

9.
BACKGROUND: Edible films and coatings based on protein/lipid combinations are among the new products being developed in order to reduce the use of plastic packaging polymers for food applications. This study was conducted to determine the effect of rapeseed oil on selected physicochemical properties of cast whey protein films. RESULTS: Films were cast from heated (80 °C for 30 min) aqueous solutions of whey protein isolate (WPI, 100 g kg?1 of water) containing glycerol (50 g kg?1 of WPI) as a plasticiser and different levels of added rapeseed oil (0, 1, 2, 3 and 4% w/w of WPI). Measurements of film microstructure, laser light‐scattering granulometry, differential scanning calorimetry, wetting properties and water vapour permeability (WVP) were made. The emulsion structure in the film suspension changed significantly during drying, with oil creaming and coalescence occurring. Increasing oil concentration led to a 2.5‐fold increase in surface hydrophobicity and decreases in WVP and denaturation temperature (Tmax). CONCLUSION: Film structure and surface properties explain the moisture absorption and film swelling as a function of moisture level and time and consequently the WVP behaviour. Small amounts of rapeseed oil favourably affect the WVP of WPI films, particularly at higher humidities. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
Gellan gum and CaCl2 were exploited to modulate the textural and techno-functional properties of heat-set whey protein hydrogels. Enrichment with CaCl2 increased the amount of released caffeine from the protein hydrogel in conjunction with decreasing cohesiveness index and microstructural features modification. Gellan bundles as visualised by microscopic images conferred a remarkable reinforcing influence to gel samples; enrichment with gellan at 0.5 mg mL−1 increased the gel hardness value approximately 6.4 fold. Based on Fourier transform infrared (FTIR) spectroscopy it was suggested that gellan and CaCl2 enrichments decreased the β-sheet content of the protein gel matrix in favour of random coil structures. FTIR spectroscopy also proposed cation-π interactions between Ca2+ ions and electron-rich amide bonds of whey proteins, as well as interactions between carboxyl groups of gellan and the ε-amino group of lysine in β-lactoglobulin.  相似文献   

11.
The functionality of whey proteins can be modified by many approaches; for example, via complexation with carbohydrates, enzymatic cross-linking, or hydrolysis, and the objective of this work was to research the effects of supercritical carbon dioxide (scCO2) treatments on the functionalities of commercial whey protein products including whey protein isolates (WPI) and whey protein concentrates (WPC). The WPI and WPC powders and a 10% (wt/vol) WPI solution were treated with scCO2. The WPI solution was treated at 40°C and 10 MPa for 1 h, whereas WPI and WPC powders were treated with scCO2 at 65°C and 10 or 30 MPa for 1 h. Dynamic rheological tests were used to characterize gelation properties before and after processing. Compared with the unprocessed samples and samples processed with N2 under similar conditions, scCO2-treated WPI, whether dispersed in water or in the powder form during treatments, formed a gel with increased strength. The improvement in gelling properties was more significant for the scCO2-treated WPC. In addition, the scCO2-processed WPI and WPC powders appeared to be fine and free-flowing, in contrast to the clumps in the unprocessed samples. Proximate compositional and surface hydrophobicity analyses indicated that both compositional and structural changes may have contributed to enhanced whey protein functionalities. The results suggest that functionalities of whey proteins can be improved by scCO2 treatment to produce novel ingredients.  相似文献   

12.
The Spherosil-QMA ion exchange process was used to prepare whey protein concentrate (WPC) from cheese whey. The process recovered about 64% of the proteins from whey as a 63% protein WPC. The WPC contained about 20.8% lactose, glucose, and galactose. The WPC proteins ranged in solubility from about 32–42% as a function of pH 3–7 and appeared to have undergone substantial denaturation by HPLC but not by palyacrylamide gel electrophoresis. The gelation properties of WPC were compared with those of commercial and ultrafiltration WPCs as a function of pH 3–7.5 and 0.0–0.15M NaCl and CaCl2. The WPC did not function well as egg replacer in model cake and custard formulations.  相似文献   

13.
The effects of sucrose on the physical properties of foams (foam overrun and drainage ½ life), air/water interfaces (interfacial dilational elastic modulus and interfacial pressure) and angel food cakes (cake volume and cake structure) of egg white protein (EWP) and whey protein isolate (WPI) was investigated for solutions containing 10% (w/v) protein. Increasing sucrose concentration (0–63.6 g/100 mL) gradually increased solution viscosity and decreased foam overrun. Two negative linear relationships were established between foam overrun and solution viscosity on a log–log scale for EWP and WPI respectively; while the foam overrun of EWP decreased in a faster rate than WPI with increasing solution viscosity (altered by sucrose). Addition of sucrose enhanced the interfacial dilational elastic modulus (E′) of EWP but reduced E′ of WPI, possibly due to different interfacial pressures. The foam drainage ½ life was proportionally correlated to the bulk phase viscosity and the interfacial elasticity regardless of protein type, suggesting that the foam destabilization changes can be slowed by a viscous continuous phase and elastic interfaces. Incorporation of sucrose altered the volume of angel food cakes prepared from WPI foams but showed no improvement on the coarse structure. In conclusion, sucrose can modify bulk phase viscosity and interfacial rheology and therefore improve the stability of wet foams. However, the poor stability of whey proteins in the conversion from a wet to a dry foam (angel food cake) cannot be changed with addition of sucrose.  相似文献   

14.
Myofibrils, oxidized with FeCl3/H2O2/ascorbate, exhibited an increase in carbonyls and amines, SH→SS conversion, peptide scission, myosin polymerization, and a decrease in thermal stability and gel‐formation ability. Amino‐acid side chains of whey‐protein isolates (WPI) and soy‐protein isolates (SPI) were also modified during oxidation, but the thermal stability of WPI or SPI was not significantly altered. Oxidation increased elasticity of SPI gel but not that of WPI gel. Similarly, oxidation promoted interactions of myofibrils with SPI but not with WPI, resulting in > 30% increases in elasticity of the myofibril/SPI composite gel over its nonoxidized control. Hence, in processed meats where oxidation occurs, the presence of soy proteins may enhance the functionality of myofibrillar proteins.  相似文献   

15.
COLD GELATION OF WHEY PROTEIN EMULSIONS   总被引:4,自引:0,他引:4  
Stable and homogeneous emulsion‐filled gels were prepared by cold gelation of whey protein isolate (WPI) emulsions. A suspension of heat‐denatured WPI (soluble WPI aggregates) was mixed with a 40% (w/w) oil‐in‐water emulsion to obtain gels with varying concentrations of WPI aggregates and oil. For emulsions stabilized with native WPI, creaming was observed upon mixing of the emulsion with a suspension of WPI aggregates, likely as a result of depletion flocculation induced by the differences in size between the droplets and aggregates. For emulsions stabilized with soluble WPI aggregates, the obtained filled suspension was stable against creaming, and homogeneous emulsion‐filled gels with varying protein and oil concentrations were obtained. Large deformation properties of the emulsion‐filled cold‐set WPI gels were determined by uniaxial compression. With increasing oil concentration, the fracture stress increases slightly, whereas the fracture strain decreases slightly. Small deformation properties were determined by oscillatory rheology. The storage modulus after 16 h of acidification was taken as a measure of the gel stiffness. Experimental results were in good agreement with predictions according to van der Poel's theory for the effect of oil concentration on the stiffness of filled gels. Especially, the influence of the modulus of the matrix on the effect of the oil droplets was in good agreement with van der Poel's theory.  相似文献   

16.
The aim of the present work was to investigate the role of whey protein denaturation on the acid induced gelation of casein. This was studied by determining the effect of whey protein denaturation both in the presence and absence of casein micelles. The study showed that milk gelation kinetics and gel properties are greatly influenced by the heat treatment sequence. When the whey proteins are denatured separately and subsequently added to casein micelles, acid-induced gelation occurs more rapidly and leads to gels with a more particulated microstructure than gels made from co-heated systems. The gels resulting from heat-treatment of a mixture of pre-denatured whey protein with casein micelles are heterogeneous in nature due to particulates formed from casein micelles which are complexed with denatured whey proteins and also from separate whey protein aggregates. Whey proteins thus offer an opportunity not only to control casein gelation but also to control the level of syneresis, which can occur.  相似文献   

17.
Heated milk consists of a mixture of whey protein-coated casein micelles and soluble whey protein aggregates. The acid-induced gelation properties of heated milk are consistently different from those of unheated milk—i.e., a shift in gelation pH, stronger gels, and a different microstructure of the gels. In this study we investigated the role of the different fractions of denatured whey proteins on the acid-induced gelation, the gel hardness, and the microstructure. Both whey protein fractions contribute to the observed shift in gelation pH, although by a different mechanism. Obtaining gels with high gel hardness occurs most effectively when all denatured whey proteins are present as whey protein aggregates. It was observed that disulfide bridge exchange reactions during the acid-induced gelation at ambient temperature play an important role for both whey protein fractions. Additionally, disulfide interactions seem to occur between the aggregates and the casein micelles during the gel state. In this study, we show the development of a new approach for confocal scanning laser microscopy measurements—i.e., separate staining of the proteins in milk. By using this method, we were able to determine that, although whey protein aggregates are not linked to the casein micelles, they nevertheless gel at the same moment. This work adds to a better understanding of the role of denatured whey proteins during acid-induced gelation and could improve the effective use of whey proteins.  相似文献   

18.
A solution of heat-denatured whey proteins was prepared by heating 10 wt.% whey protein isolate at pH 7.0 to 80°C for 10 min in the absence of salt. This treatment caused the globular protein molecules to partially unfold and aggregate. When the heat-denatured whey protein solution was cooled to room temperature and mixed with 200 mM NaCl it formed a gel. The influence of sucrose (0 to 10 wt.%) in the protein solutions prior to NaCl addition on the gelation rate was investigated. At relatively low concentrations (0–8 wt.%) sucrose decreased the gelation rate, presumably because sucrose increased the aqueous phase viscosity. At higher concentrations (> 8 wt.%) sucrose increased the gelation rate, probably because it decreased the thermodynamic affinity of the globular proteins for the aqueous solution, which increased the attraction between proteins. This data has important implications for the application of cold-setting whey protein ingredients in sweetened food products such as deserts and beverages.  相似文献   

19.
BACKGROUND: Milk proteins are used in a wide range of formulated food emulsions. The stability of food emulsions depends on their ingredients and processing conditions. In this work, β‐carotene nanodispersions were prepared with selected milk‐protein products using solvent‐displacement method. The objective of this work was to evaluate the stability of these nanodispersions against heating, salts and pH. RESULTS: Sodium caseinate (SC)‐stabilised nanodispersions possessed the smallest mean particle size of 17 nm, while those prepared with whey‐protein products resulted in larger mean particle sizes (45–127 nm). Formation of large particles (mean particle size of 300 nm) started after 1 h of heating at 60 °C in nanodispersions prepared with SC. More drastic particle size changes were observed in nanodispersions prepared with whey protein concentrate and whey protein isolate. The SC‐stabilised nanodispersions were fairly stable against Na+ ions at concentrations below 100 mmol L?1, but drastic aggregation occurred in ≥ 50 mmol L?1 CaCl2 solutions. Aggregation was also observed in whey protein‐stabilised nanodispersions after the addition of NaCl and CaCl2 solutions. All sample exhibited the smallest mean particle size at neutral pH, but large aggregates were formed at both ends of extreme pH and at pH around the isoelectric point of the proteins. CONCLUSION: The nanodispersions prepared with SC were generally more stable against thermal processing, ionic strength and pH, compared to those prepared with whey proteins. The stable β‐carotene nanodispersions showed a good potential for industrial applications. Copyright © 2008 Society of Chemical Industry  相似文献   

20.
A study on the enrichment of angiotensin-converting enzyme (ACE) inhibitory activity in whey protein isolate (WPI) hydrolysate fractions is presented. A previously identified low molecular mass fraction (1 kDa permeate) of an enzymatically hydrolysed heat-treated WPI with elevated ACE-inhibition (IC50 = 0.23 g L−1) was subjected to cascade membrane ultrafiltration (UF) and diafiltration steps at lab-scale. Assaying for ACE-inhibition revealed that the 1 kDa retentate demonstrated the highest ACE-inhibitory activity (IC50 = 0.17 g L−1). Isoelectric focussing (IEF) of the hydrolysate fraction further increased ACE-inhibition in fractions collected within the pH range 6.1–6.6. Overall, both UF and IEF enriched the ACE inhibitory activity in the original fraction by ∼52%, demonstrating the potential for enrichment of bio-functional activities in enzymatic hydrolysates of whey proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号