首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper presents an analytical solution capable of predicting the effect of matrix cracking in ceramic matrix composites (CMC) on damping. The cracking scenarios considered in the paper include through-the-thickness cracks and cracks terminating at the layer interfaces. The increase in damping associated with matrix cracking is mostly due to the frictional energy dissipation along the damaged fiber–matrix interfaces adjacent to the bridging cracks whose plane of propagation intersects the fiber axis. Damping increases with a higher density of matrix cracks. The loss factor is affected by the angle of the lamina relative to the direction of the applied load. The loss factor is also influenced by the frequency and magnitude of local dynamic stresses. Examples of distributions of the local loss factor along the axis of a CMC beam subject to pulsating loads of various frequencies are shown in the paper.  相似文献   

2.
Many appliance materials are made of PMMA/Si acrylic casting dispersion. In these situations, failure can occur by thermal fatigue induced by severe temperature variations such as alternating flows of cold and hot water. This paper is concerned with the numerical analysis of the thermal stresses in three composites with different volume fractions of filler and particle size. Their trade marks are Asterite, Amatis and Ultra-quartz. Cosmos/M finite element method software was used to study the influence of the cold and hot water temperatures as well as the time of interruption of water flow in the transition between hot and cold water on thermal stresses. Residual stresses were measured and superimposed to thermal stress in fatigue analysis. Typical defects in the corner of holes produced by drilling were predicted using experimental fatigue lives and da/dN curves. Based on predicted defects thermal fatigue assessment of commercially available sinks made with the three materials mentioned earlier was done by taking into account the influence of both cyclic thermal and static residual stresses induced by the manufacturing process.  相似文献   

3.
A micromechanics analytical model based on the consistent shear lag theory is developed for predicting the failure modes in fiber reinforced unidirectional stiff matrix composites. The model accounts for a relatively large matrix stiffness and hence its load carrying capacity. The fiber and matrix stresses are established as functions of the applied stress, crack geometry, and the microstructural properties of the constituents. From the predicted stresses, the mode of failure is established based on a point stress failure criterion. The role of the microstructural parameters of the constituents on the failure modes such as self-similar continuous cracking, crack bridging and debonding parallel to the fibers is assessed.  相似文献   

4.
经典唯象强度理论适用于正交各向异性线弹性体.对于非线性纤维增强复合材料,通过加卸载试验和损伤力学的分析方法,可以得到一种虚拟的线性化应力-应变关系;依据损伤等效假设,针对线性损伤和非线性损伤,对基于应力的经典二次失效准则进行变换,建立了一种基于损伤的强度理论,即"D失效判据",这一强度理论可以作为经典判据的补充和扩展.针对平纹编织C/SiC复合材料的拉/剪组合试验,进行了实例计算,结果表明:利用D失效判据预测的失效包络线比蔡-希尔准则的预测曲线低,而且,失效曲线的形式与材料的损伤演化规律相关.  相似文献   

5.
For fiber reinforced ceramic matrix composites(CMCs),oxidation of the constituents is a very important damage type for high temperature applications. During the oxidizing process,the pyrolytic carbon interphase gradually recesses from the crack site in the axial direction of the fiber into the interior of the material. Carbon fiber usually presents notch-like or local neck-shrink oxidation phenomenon,causing strength degradation. But,the reason for SiC fiber degradation is the aw growth mechanism on its surface. A micromechanical model based on the above mechanisms was established to simulate the mechanical properties of CMCs after high temperature oxidation. The statistic and shearlag theory were applied and the calculation expressions for retained tensile modulus and strength were deduced,respectively. Meanwhile,the interphase recession and fiber strength degradation were considered. And then,the model was validated by application to a C/SiC composite.  相似文献   

6.
In this work, the benefits from the blending between micro-structural fracture mechanics and elasto-plastic fracture mechanics in the analysis of fatigue damage in titanium metal matrix composites (TMCs) is presented. The efficiency of interfacial debonding and fibre bridging (FB) are shown not only to control crack growth but also to be responsible for severe crack growth changes taking place throughout the material's response under fatigue. A possible way to extract answers about the fatigue threshold, the operational life of the material and finally the fracture toughness is given in detail.  相似文献   

7.
Summary  We consider a linearly thermoelastic composite medium, which consists of a homogeneous matrix containing a statistically inhomogeneous random set of ellipsoidal uncoated or coated inclusions, where the concentration of the inclusions is a function of the coordinates (functionally graded material). Effective properties, such as compliance and thermal expansion coefficient, as well as first statistical moments of stresses in the components are estimated for the general case of inhomogeneity of the thermoelastic inclusion properties. The micromechanical approach is based on the Green function technique as well as on the generalization of the multiparticle effective field method (MEFM), previously proposed for the research of statistically homogeneous random structure composites. The hypothesis of effective field homogeneity near the inclusions is used; nonlocal effects of overall constitutive relations are not considered. Nonlocal dependences of local effective thermoelastic properties as well as those of conditional averages of the stresses in the components on the concentration of the inclusions are demonstrated. Received 11 November 1999; accepted for publication 4 May 2000  相似文献   

8.
建立横向拉伸载荷下的唇形裂纹数学模型,采用复变函数的方法,通过保角映射,推导了唇形裂纹尖端应力场和位移场的解析解,建立了唇形裂纹的应力强度因子准则和最大能量释放率准则,结合算例分析陶瓷基复合材料基体唇形裂纹的几何参数、外载荷和纤维分布对失效准则的影响规律.结果 表明,(1)裂纹尖端应力场和位移场的解析解与有限元计算结果...  相似文献   

9.

为了探究C/SiC陶瓷基复合材料的动态断裂力学行为和破坏形态,利用分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)装置对3种不同短切碳纤维体积分数的C/SiC陶瓷基复合材料进行了动态劈裂实验,并利用扫描电子显微镜扫描了C/SiC复合材料试件的破坏界面,分析了C/SiC陶瓷基复合材料的失效特征和增韧机理。实验结果表明:C/SiC复合材料在冲击劈裂实验过程中,同一短切碳纤维体积分数下试件的动态抗拉强度随着冲击气压的增大而增大; 短切碳纤维体积分数为16.0%时, 材料的抗拉强度最低; 冲击后,试件的整体破坏情况与冲击气压、短切碳纤维体积分数有关。

  相似文献   

10.
Creep models for unidirectional ceramic matrix composites reinforced by long creeping fibers with weak interfaces are presented. These models extend the work of Du and McMeeking (1995) [Du, Z., McMeeking, R. 1995. Creep models for metal matrix composites with long brittle fibers. J. Mech. Phys. Solids 43, 701–726] to include the effect of fiber primary creep present in the required operational temperatures for ceramic matrix composites (CMCs). The effects of fiber breaks and the consequential stress relaxation around the breaks are incorporated in the models under the assumption of global load sharing and time-independent stochastics for fiber failure. From the set of problems analyzed, it is found that the high-temperature deformation of CMCs is sensitive to the creep-compliance of the fibers. High fiber creep-compliance drives the composite to creep faster, leading however to greater lifetimes and greater overall strains at rupture. This behavior is attributed to the fact that the greater the creep-compliance of the fibers, the higher the creep rate but the slower the matrix stress relaxation – since the matrix must deform with a rate compatible with the more creep-resistant fibers – and therefore the less the load carried by the main load-bearing phase, the fibers. As a result, fewer fibers fail and less damage is accumulated in the system. Moreover, the greater the creep-compliance of the fibers, the slower the matrix shear stress relaxation – and thus the lower the levels of applied stress for which this effect becomes important. The slower the shear stress relaxes, the slower the “slip” length increases. Due to the Weibull nature of the fibers, the fiber strengths at the smaller gauge length of the slip length are stronger; therefore fewer fibers undergo damage. Hence, high fiber creep-compliance is desirable (in the absence of any explicit creep-damage mechanism) in terms of composite lifetime but not in terms of overall strain. These results are considered of importance for composite design and optimization.  相似文献   

11.
The problem of bifurcation instability of shells of revolution made of particulate composites with physically nonlinear matrix and damageable inclusions is formulated and solved __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 6, pp. 70–80, June 2008.  相似文献   

12.
The multi-fracture response of cross-ply ceramic composites   总被引:1,自引:0,他引:1  
The mechanical response of cross-ply SiC/CAS ceramic matrix composites was investigated experimentally and analytically. The experiments consisted of recording stress-strain behavior, counting matrix cracks and measuring the interlaminar shearing strength. The analysis employed an extended shear-lag model which incorporated non-linear behavior of the 0° plies and interlaminar slip between the 0 and 90° plies. The evolution of the multi-cracking process was determined by means of fracture criterion, leading to the prediction of the overall stress-strain response of the cross-ply laminate.  相似文献   

13.
In this paper linearly thermoelastic composite media are treated, which consist of a homogeneous matrix containing a statistically homogeneous random set of heterogeneities. Effective properties (such as compliance, thermal expansion, stored energy) as well as the first statistical moments of stresses in the phases are estimated for the general case of nonhomogeneity of the thermoelastic inclusion properties. The micromechanical approach is based on the generalization of the “multiparticle effective field” method (MEFM, see for references Buryachenko, Appl. Mech. Rev. (2001), 54, 1–47), previously proposed for the estimation of stress field averages in the phases. The method exploits as a background the new general integral equation proposed by the author before and makes it possible to abandon the use of the central concept of classical micromechanics such as effective field hypothesis as well as their satellite hypothesis of “ellipsoidal symmetry”. The implicit recursion representations of the effective thermoelastic properties and stress concentration factor are expressed through some building blocks described by numerical solutions for both the one and two inclusions inside the infinite medium subjected to the inhomogeneous effective fields evaluated from subsequent self-consistent estimations. One also estimates the inhomogeneous statistical moments of local stress fields which are extremely useful for understanding the evolution of nonlinear phenomena such as plasticity, creep, and damage. Just at some additional assumptions (such as an effective field hypothesis) the involved tensors can be expressed through the Green function, Eshelby tensor and external Eshelby tensor. These estimated inhomogeneities of effective fields lead to the detection of fundamentally new effects for the local stresses inside the heterogeneities.  相似文献   

14.
15.
Under consideration is the problem of size and response of the representative volume element (RVE) of spatially random linear viscoelastic materials. The model microstructure adopted here is the random checkerboard with one phase elastic and another viscoelastic, perfectly bonded everywhere. The method relies on the hierarchies of mesoscale bounds of relaxation moduli and creep compliances (Huet, 1995, 1999) obtained via solutions of two stochastic initial boundary value problems, respectively, under uniform kinematic and uniform stress boundary conditions. In general, the microscale viscoelasticity introduces larger discrepancy in the hierarchy of mesoscale bounds compared to elasticity, and this discrepancy grows as the time increases.  相似文献   

16.
The purpose of this paper is to experimentally validate a 1D probabilistic model of damage evolution in unidirectional SiC/SiC composites. The key point of this approach lies in the identification and validation at both local and macroscopic scales. Thus, in addition to macroscopic tensile tests, the evolution of microscopic damage mechanisms – in the form of matrix cracks and fiber breaks – is experimentally analyzed and quantified through in-situ scanning electron microscope and computed tomography tensile tests. A complete model, including both matrix cracking and fiber breaking, is proposed on the basis of existing modeling tools separately addressing these mechanisms. It is based on matrix and fiber failure probability laws and a stress redistribution assumption in the vicinity of matrix cracks or fiber breaks. The identification of interfacial parameters is conducted to fit the experimental characterization, and shows that conventional assumptions of 1D probabilistic models can adequately describe matrix cracking at both macro- and microscopic scales. However, it is necessary to enrich them to get a proper prediction of ultimate failure and fiber break density for Hi-Nicalon type S fiber-reinforced SiC/SiC minicomposites.  相似文献   

17.
A computationally economic finite-element-based stress analysis model, developed previously by the authors, has been extended to predict the thermal behaviour of ceramic matrix composites with strain-induced damage. The finite element analysis utilises a solid element to represent a homogenised orthotropic medium of a heterogeneous uni-directional tow. The non-linear multi-axial strain dependent thermal behaviour has been discretised by multi-linear curves, which have been implemented by a user defined subroutine, USDFLD, in the commercial finite element package, ABAQUS. The model has been used to study the performance of two CMC composites: a SiC (Nicalon) fibre-calcium aluminosilicate (CAS) matrix, 0°/90° cross-ply laminate Nicalon-CAS; and, carbon fibre-dual carbon-SiC matrix (C/C-SiC), plain weave laminate DLR-XT. The global through-thickness thermal conductivity degradation with composite uni-axial strain has been predicted. Comparisons have been made between the predictions and experimental data for both materials, and good agreement has been achieved. For the Nicalon-CAS 0°/90° cross-ply the dominant mechanism of thermal conductivity degradation is combined fibre failure and associated wake debonding; and, for the DLR-XT plain weave the same mechanisms act in combination with out-of-plane shear failure.  相似文献   

18.
Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 120–125, January–February, 1991.  相似文献   

19.
Institute of Mechanics, Academy of Sciences of the Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 28, No. 10, pp. 52–57, October, 1992.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号