共查询到20条相似文献,搜索用时 31 毫秒
1.
《International Journal of Solids and Structures》2003,40(16):4239-4256
The paper presents an analytical solution capable of predicting the effect of matrix cracking in ceramic matrix composites (CMC) on damping. The cracking scenarios considered in the paper include through-the-thickness cracks and cracks terminating at the layer interfaces. The increase in damping associated with matrix cracking is mostly due to the frictional energy dissipation along the damaged fiber–matrix interfaces adjacent to the bridging cracks whose plane of propagation intersects the fiber axis. Damping increases with a higher density of matrix cracks. The loss factor is affected by the angle of the lamina relative to the direction of the applied load. The loss factor is also influenced by the frequency and magnitude of local dynamic stresses. Examples of distributions of the local loss factor along the axis of a CMC beam subject to pulsating loads of various frequencies are shown in the paper. 相似文献
2.
C. Capela J.D. Costa F. Antunes J.M. Ferreira 《Theoretical and Applied Fracture Mechanics》2004,42(2):171-181
Many appliance materials are made of PMMA/Si acrylic casting dispersion. In these situations, failure can occur by thermal fatigue induced by severe temperature variations such as alternating flows of cold and hot water. This paper is concerned with the numerical analysis of the thermal stresses in three composites with different volume fractions of filler and particle size. Their trade marks are Asterite, Amatis and Ultra-quartz. Cosmos/M finite element method software was used to study the influence of the cold and hot water temperatures as well as the time of interruption of water flow in the transition between hot and cold water on thermal stresses. Residual stresses were measured and superimposed to thermal stress in fatigue analysis. Typical defects in the corner of holes produced by drilling were predicted using experimental fatigue lives and da/dN curves. Based on predicted defects thermal fatigue assessment of commercially available sinks made with the three materials mentioned earlier was done by taking into account the influence of both cyclic thermal and static residual stresses induced by the manufacturing process. 相似文献
3.
A micromechanics analytical model based on the consistent shear lag theory is developed for predicting the failure modes in fiber reinforced unidirectional stiff matrix composites. The model accounts for a relatively large matrix stiffness and hence its load carrying capacity. The fiber and matrix stresses are established as functions of the applied stress, crack geometry, and the microstructural properties of the constituents. From the predicted stresses, the mode of failure is established based on a point stress failure criterion. The role of the microstructural parameters of the constituents on the failure modes such as self-similar continuous cracking, crack bridging and debonding parallel to the fibers is assessed. 相似文献
4.
Cheng-Peng Yang · Gui-Qiong Jiao · Bo Wang Department of Engineering Mechanics Northwestern Polytechnical University Xi’an China 《Acta Mechanica Sinica》2011,27(3):382-388
For fiber reinforced ceramic matrix composites(CMCs),oxidation of the constituents is a very important damage type for high temperature applications. During the oxidizing process,the pyrolytic carbon interphase gradually recesses from the crack site in the axial direction of the fiber into the interior of the material. Carbon fiber usually presents notch-like or local neck-shrink oxidation phenomenon,causing strength degradation. But,the reason for SiC fiber degradation is the aw growth mechanism on its surface. A micromechanical model based on the above mechanisms was established to simulate the mechanical properties of CMCs after high temperature oxidation. The statistic and shearlag theory were applied and the calculation expressions for retained tensile modulus and strength were deduced,respectively. Meanwhile,the interphase recession and fiber strength degradation were considered. And then,the model was validated by application to a C/SiC composite. 相似文献
5.
V. A. Buryachenko F. G. Rammerstorfer 《Archive of Applied Mechanics (Ingenieur Archiv)》2001,71(4-5):249-272
Summary We consider a linearly thermoelastic composite medium, which consists of a homogeneous matrix containing a statistically inhomogeneous random set of ellipsoidal uncoated or coated inclusions, where the concentration of the inclusions is a function of the coordinates (functionally graded material). Effective properties, such as compliance and thermal expansion coefficient, as well as first statistical moments of stresses in the components are estimated for the general case of inhomogeneity of the thermoelastic inclusion properties. The micromechanical approach is based on the Green function technique as well as on the generalization of the multiparticle effective field method (MEFM), previously proposed for the research of statistically homogeneous random structure composites. The hypothesis of effective field homogeneity near the inclusions is used; nonlocal effects of overall constitutive relations are not considered. Nonlocal dependences of local effective thermoelastic properties as well as those of conditional averages of the stresses in the components on the concentration of the inclusions are demonstrated. Received 11 November 1999; accepted for publication 4 May 2000 相似文献
6.
Theocharis Baxevanis Michael Plexousakis 《International Journal of Solids and Structures》2010,47(18-19):2487-2497
Creep models for unidirectional ceramic matrix composites reinforced by long creeping fibers with weak interfaces are presented. These models extend the work of Du and McMeeking (1995) [Du, Z., McMeeking, R. 1995. Creep models for metal matrix composites with long brittle fibers. J. Mech. Phys. Solids 43, 701–726] to include the effect of fiber primary creep present in the required operational temperatures for ceramic matrix composites (CMCs). The effects of fiber breaks and the consequential stress relaxation around the breaks are incorporated in the models under the assumption of global load sharing and time-independent stochastics for fiber failure. From the set of problems analyzed, it is found that the high-temperature deformation of CMCs is sensitive to the creep-compliance of the fibers. High fiber creep-compliance drives the composite to creep faster, leading however to greater lifetimes and greater overall strains at rupture. This behavior is attributed to the fact that the greater the creep-compliance of the fibers, the higher the creep rate but the slower the matrix stress relaxation – since the matrix must deform with a rate compatible with the more creep-resistant fibers – and therefore the less the load carried by the main load-bearing phase, the fibers. As a result, fewer fibers fail and less damage is accumulated in the system. Moreover, the greater the creep-compliance of the fibers, the slower the matrix shear stress relaxation – and thus the lower the levels of applied stress for which this effect becomes important. The slower the shear stress relaxes, the slower the “slip” length increases. Due to the Weibull nature of the fibers, the fiber strengths at the smaller gauge length of the slip length are stronger; therefore fewer fibers undergo damage. Hence, high fiber creep-compliance is desirable (in the absence of any explicit creep-damage mechanism) in terms of composite lifetime but not in terms of overall strain. These results are considered of importance for composite design and optimization. 相似文献
7.
The problem of bifurcation instability of shells of revolution made of particulate composites with physically nonlinear matrix
and damageable inclusions is formulated and solved
__________
Translated from Prikladnaya Mekhanika, Vol. 44, No. 6, pp. 70–80, June 2008. 相似文献
8.
The multi-fracture response of cross-ply ceramic composites 总被引:1,自引:0,他引:1
The mechanical response of cross-ply SiC/CAS ceramic matrix composites was investigated experimentally and analytically. The experiments consisted of recording stress-strain behavior, counting matrix cracks and measuring the interlaminar shearing strength. The analysis employed an extended shear-lag model which incorporated non-linear behavior of the 0° plies and interlaminar slip between the 0 and 90° plies. The evolution of the multi-cracking process was determined by means of fracture criterion, leading to the prediction of the overall stress-strain response of the cross-ply laminate. 相似文献
9.
10.
Under consideration is the problem of size and response of the representative volume element (RVE) of spatially random linear viscoelastic materials. The model microstructure adopted here is the random checkerboard with one phase elastic and another viscoelastic, perfectly bonded everywhere. The method relies on the hierarchies of mesoscale bounds of relaxation moduli and creep compliances (Huet, 1995, 1999) obtained via solutions of two stochastic initial boundary value problems, respectively, under uniform kinematic and uniform stress boundary conditions. In general, the microscale viscoelasticity introduces larger discrepancy in the hierarchy of mesoscale bounds compared to elasticity, and this discrepancy grows as the time increases. 相似文献
11.
P. G. Krzhechkovskii 《Journal of Applied Mechanics and Technical Physics》1991,32(1):115-120
Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 120–125, January–February, 1991. 相似文献
12.
13.
Institute of Mechanics, Academy of Sciences of the Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 28, No. 10, pp. 52–57, October, 1992. 相似文献
14.
J. A. M. Ferreira J. D. M. Costa P. N. B. Reis 《Theoretical and Applied Fracture Mechanics》1999,31(1):759
This paper is concerned with fatigue of polypropylene/glass-fibre thermoplastic composites produced from a bi-directional woven cloth mixture of E glass fibres and polypropylene fibres. The latter becomes the matrix after the application of heat and pressure. This composite was manufactured with a fibre volume fraction Vf of 0.338. The effect of layer design on the static and fatigue performance was investigated. The S–N curves, the rise in the temperature of the specimens during the tests and the loss of stiffness, were obtained and discussed. The loss of stiffness was related to the rise of temperature and stress release observed in the material. The effect of load rate on the static properties was also studied and discussed accordingly. 相似文献
15.
Patrizia Trovalusci Maria Laura De Bellis Martin Ostoja-Starzewski Agnese Murrali 《Meccanica》2014,49(11):2719-2727
Many composite materials, widely used in different engineering fields, are characterized by random distributions of the constituents. Examples range from polycrystals to concrete and masonry-like materials. In this work we propose a statistically-based scale-dependent multiscale procedure aimed at the simulation of the mechanical behavior of a two-phase particle random medium and at the estimation of the elastic moduli of the energy-equivalent homogeneous micropolar continuum. The key idea of the procedure is to approach the so-called Representative Volume Element (RVE) using finite-size scaling of Statistical Volume Elements (SVEs). To this end properly defined Dirichlet, Neumann, and periodic-type non-classical boundary value problems are numerically solved on the SVEs defining hierarchies of constitutive bounds. The results of the performed numerical simulations point out the importance of accounting for spatial randomness as well as the additional degrees of freedom of the continuum with rigid local structure. 相似文献
16.
A.D. Drozdov 《International Journal of Solids and Structures》2011,48(13):2026-2040
Observations are reported on a polymer composite (polyamide-6 reinforced with short glass fibers) in tensile relaxation tests with various strains, tensile creep tests with various stresses, and cyclic tests with a stress-controlled program (ratcheting with a fixed maximum stress and various minimum stresses). Constitutive equations are developed in cyclic viscoelastoplasticity of polymer composites. Adjustable parameters in the stress–strain relations are found by fitting observations in relaxation tests and cyclic tests (16 cycles of loading–unloading). It is demonstrated that the model correctly predicts experimental data in creep tests and dependencies of maximum and minimum strains per cycle on number of cycles up to fatigue fracture of specimens. The influence of strain rate and minimum stress on number of cycles to failure is studied numerically. 相似文献
17.
A numerical analysis of the interface debonding process is carried out for fiber–matrix composites under cyclic loading. The results show that the interface friction plays an important role in resisting debonding under fatigue. The degradation coefficient of interface friction influences the debonding velocity. An approximate formula of interface friction is found for fatigue debonding. 相似文献
18.
This paper describes an expeirmental investigation which was carried out to determine the fatigue life of two aluminum alloys (2024-T3 and 6061-T6). They were subjected to both constant-strain-amplitude sinusoidal and narrow-band random-strain-amplitude fatigue loadings. The fatigue-life values obtained from the narrow-band random testing were compared with theoretical predictions based on Miner's linear accumulation of damage hypothesis. Cantilever-beam-test specimens fabricated from the aluminum alloys were subjected to either a constant-strain-amplitude sinusoidal or a narrow-band random base excitation by means of an electromagnetic vibrations exciter. It was found that the ε-N curves for both alloys could be approximated by three straight-line segments in the low-, intermediate- and high-cycle fatigue-life ranges. Miner's hypothesis was used to predict the narrow-band random fatigue lives of materials with this type of ε-N behavior. These fatigue-life predictions were found to consistently overestimate the acutal fatigue lives by a factor of 2 or 3. However, the shape of the predicted fatigue-life curves and the high-cycle fatigue behavior of both materials were found to be in good agreement with the experimental results. 相似文献
19.
Kostas P. Soldatos 《International Journal of Solids and Structures》2013,50(7-8):1078-1092
The present study investigates the influence that polar material response has on the plastic behaviour of thin-walled structures made of ideal fibre-reinforced materials (Spencer, 1972); or, equivalently, on the response of thin-walled fibrous composites within the first branch of the matrix dominated form (MDM) of the bimodal theory of plasticity (Soldatos, 2011, Dvorak and Bahei-El-Din, 1987). The plasticity studies mentioned above assume that fibres are infinitely thin and, therefore, perfectly flexible. They possess no bending stiffness and, hence, their negligible bending resistance cannot influence the developed stress state, which is accordingly described by a symmetric stress tensor. In contrast, the present study considers that if fibres resistant in bending are embedded in a material at high volume concentrations, their flexure produces couple-stress and, as a result of this kind of polar material behaviour, the stress tensor becomes non-symmetric. Under plane stress conditions that dominate behaviour of thin-walled structures, the stress-space and, therefore, conditions of plastic yield and relevant yield surfaces are thus four-dimensional. However, shapes and properties of initial yield surfaces relevant to the f1-branch of MDM are studied comprehensively by considering their projection on particular planes of such a four-dimensional stress-space. It then becomes easier understood that, in the regime of polar material response, a thin-walled structure made of ideal fibre-reinforced material deforms plastically when suitable combinations of shear stress values are reached simultaneously, rather than when only one of two unequal shear stress components reaches some maximum absolute value. Thus, polar material plasticity dismisses the conventional concept of material yield stress in shear and replaces it with a pair of two independent yield moduli. Existence of the latter is perceived as a theoretical justification of the expectation that, due to the presence of fibres, two rather than one shear yield parameters of the composite should be present and accountable for. The non-zero values of those parameters are shown to exert paramount influence on the form of the yield surface of the ideal fibre-reinforced material of interest. 相似文献
20.
D. J. Roberts A.-V. Phan H. V. Tippur L. J. Gray T. Kaplan 《Archive of Applied Mechanics (Ingenieur Archiv)》2010,80(3):307-322
The symmetric-Galerkin boundary element method (SGBEM) has previously been employed to model 2-D crack growth in particulate composites under quasi-static loading conditions. In this paper, an initial attempt is made in extending the simulation technique to analyze the interaction between a growing crack and clusters of perfectly bonded particles in a brittle matrix under cyclic loading conditions. To this end, linear elastic fracture mechanics and no hysteresis are assumed. Of particular interest is the role clusters of inclusions play on the fatigue life of particulate composites. The simulations employ a fatigue crack growth prediction tool based upon the SGBEM for multiregions, a modified quarter-point crack-tip element, the displacement correlation technique for evaluating stress intensity factors, a Paris law for fatigue crack growth rates, and the maximum principal stress criterion for crack-growth direction. The numerical results suggest that this fatigue crack growth prediction tool is as robust as the quasi-static crack growth prediction tool previously developed. The simulations also show a complex interplay between a propagating crack and an inclusion cluster of different densities when it comes to predicting the fatigue life of particulate composites with various volume fractions. 相似文献