首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
贝利特-硫铝酸钡钙水泥的煅烧及其性能   总被引:3,自引:0,他引:3  
采用正交试验方法研究了贝利特-硫铝酸钡钙水泥熟料的煅烧条件.实验表明:该水泥熟料的最佳煅烧温度为1 350℃,保温时间为90min,冷却方式是急冷.同时发现,水泥中石膏的最佳掺量为5%(质量分数).所制备的贝利特-硫铝酸钡钙水泥的3 d和28 d抗压强度分别为26A MPa和80.4MPa,显示有良好的早期力学性能;石膏能促进该水泥的水化硬化,增加钙矾石在水化早期的形成数量,这是水泥早期强度提高的主要原因.对水泥熟料及其水化产物的组成、结构和形貌进行了分析.该水泥熟料的主要矿物组成为贝利特、阿利特和硫铝酸钡钙,主要水化产物有水化硅酸钙凝胶、钙矾石和氢氧化钙等.  相似文献   

2.
设计了五种不同f-CaSO4/C4 A3 S的生料配比,研究了f-CaSO4含量变化对高贝利特硫铝酸盐水泥熟料烧成的影响.通过TG-DSC分析了高贝利特硫铝酸盐水泥熟料的形成过程,利用XRD、f-CaO含量分析得到了熟料的适宜煅烧制度,进一步用SEM观察了不同含量f-CaSO4对熟料矿物微观形貌影响,最后研究了f-CaSO4对高贝利特硫铝酸盐水泥熟料力学性能的影响.结果表明:高贝利特硫铝酸盐水泥熟料的适宜煅烧温度范围为1300~1400℃,保温时间为40 min;熟料中C2 S、C4 AF含量与设计值相一致,随着f-CaSO4/C4 A3 S增加,非晶固溶体有逐渐增多的趋势;随着f-CaSO4/C4 A3 S增加,熟料早期强度先增大后降低,后期强度逐渐增大,当f-CaSO4/C4 A3 S为0.4时有最高早期强度.  相似文献   

3.
以脱硫石油焦渣、粉煤灰及电石渣等工业固体废弃物为主要原料,辅掺少量铝矾土,烧制一种以无水硫铝酸钙(C4A3S)、硅酸二钙(C2S)和铁铝酸四钙(C4AF)为主要矿物的绿色高贝利特硫铝酸盐水泥熟料。利用XRD和TG-DSC相结合的分析方法研究了煅烧温度、煅烧时间及升温速率对水泥熟料烧成的影响。结果表明:该水泥熟料的烧成温度在1?200~1?300 ℃之间,煅烧区间为100 ℃,最佳煅烧温度为1?280 ℃,保温时间45 min及升温速率10 ℃/min,该煅烧条件下制得的水泥熟料1 d、3 d、28 d强度分别可达32.7 MPa、37.5 MPa和58.5 MPa,当煅烧温度高于1?300 ℃或煅烧时间过长时,容易造成C4A3S的分解,从而影响水泥熟料性能。  相似文献   

4.
与硅酸三钙相比,硫铝酸钙、硅酸二钙和硫硅酸钙等具有钙含量低、烧成温度低和CO2排放量少的特点,属于低钙水泥熟料矿物。发展以低钙矿物为主要组成的水泥熟料是水泥低碳发展的重要方向。本文在分析硫铝酸钙、硅酸二钙和硫硅酸钙3种低钙矿物的活性、水化和性能发展的基础上,分别对以低钙矿物为主要矿物的硫铝酸盐水泥熟料、高贝利特硫铝酸盐水泥熟料的水化和性能发展,硅酸二钙–硫铝酸钙–硫硅酸钙水泥熟料的制备、水化和性能优化进行了综合评述。同时,鉴于石膏在低钙水泥熟料水化方面具有重要影响,综述了石膏在几种低钙水泥中的作用。文章以期为运用硫铝酸钙、硅酸二钙和硫硅酸钙等矿物制备低钙水泥熟料提供参考。  相似文献   

5.
高贝利特硫铝酸盐水泥的熟料煅烧及其强度   总被引:3,自引:0,他引:3  
用粉煤灰、石灰石、石膏作原料,烧制了以贝利特(β-C2S)为主、无水硫铝酸钙(C4A3S)为辅的高贝利特硫铝酸盐水泥,其w(β-C2S)达60%、w(C4A3S) 30%,熟料中无C3S和C3A.分析了率值和煅烧制度对熟料矿物形成的影响,较佳的煅烧工艺参数是:碱度系数Cm为0.95~1.03,铝硫比P为3.32~3.65,煅烧温度1280~1340 ℃,保温时间45~70 min.试验表明C4A3S使水泥具有较高的早期强度,大量的β-C2S持续水化保证了水泥强度的稳定增长.水泥胶砂的1 d、3 d、7 d和28 d抗压强度分别为16.5 MPa、28.0 MPa、36.7 MPa和48.6 MPa.硬化水泥砂浆的总孔隙率低,最可几孔径小.  相似文献   

6.
研究了一种新型快凝快硬高贝利特硫铝酸盐水泥的水化性能,并利用微量热仪、XRD、TGA、SEM等方法进行了水泥水化过程,水化产物和微观形貌结构的表征.实验结果表明:新型高贝利特硫铝酸盐水泥熟料的早期水化放热迅速并集中,早期强度发展迅速;该水泥的早期水化产物主要为AFt和铝胶相,未发现CH相;在水化后期,生成的AFt会发生转化生成AFm相,同样没有发现CH相.随着水化的进行,水化产物不断增多,针棒状的AFt穿插,交错在凝胶之间,形成了较为致密的结构,从而提高了水泥的强度.  相似文献   

7.
利用XRD和TG-DSC分析相结合的方法,研究了快凝快硬高贝利特硫铝酸盐水泥熟料的烧成过程.研究结果表明:该水泥熟料的烧成温度范围在1250~1350℃之间,即(1300±50)℃,烧成范围与普通硫铝酸盐水泥熟料一样为100℃,但烧成温度要低50℃.当温度在1250℃以上时,硫的分解明显增加,因此快硬快硬高贝利特硫铝酸盐水泥熟料烧成温度不宜超过1350℃,以免硫的分解过多,造成C4A3(S)的分解,降低水泥强度.  相似文献   

8.
阿利特-硫铝酸盐水泥的试生产   总被引:1,自引:0,他引:1  
阿利特-硫铝酸盐水泥是近年来出现的新品种水泥,该水泥熟料的主要矿物组成有C3S、C2S、C4A3S、C4AF和CS,所制成的水泥具有水化快、早期强度高、水化时体积收缩小或不收缩、耐腐蚀等优点。生产该水泥的主要矛盾是阿利特相和硫铝酸钙相在熟料中的共存问题。因为C4A3S主要是在1200~1300℃形成,1350℃以上开始分解,大于1400℃时加速分解,而C3S则是在1400℃左右才大量形成,所以降低熟料的煅烧温度是成功的关键。为此我们利用一些原材料的特性,降低熟料烧成时液相出现的温度以及液相粘度,从而使阿利…  相似文献   

9.
研究了5、20℃和40℃硫铝酸盐水泥熟料-硅酸盐水泥-无水石膏三元体系(简称三元体系)的初凝时间、抗压强度及水化产物组成。结果表明:源自水化产物的显著差异,所涉硫铝酸盐水泥熟料为主的复合胶凝体系的性能对养护温度的敏感程度直接取决于初始配合比。与纯硫铝酸盐水泥熟料相比,单掺硅酸盐水泥时水化产物由钙矾石变为水化钙铝黄长石,导致硬化浆体力学强度显著降低。而单掺无水石膏或复掺无水石膏和硅酸盐水泥时,石膏的掺入促进了钙矾石的生成,有效抑制了向单硫型水化硫铝酸钙的转变(尤其在高温下),使得高温下的抗压强度略有提升。此外,欲使三元体系在不同养护温度下的初凝时间变化不大,硅酸盐水泥的掺量需控制在30%以上;要使抗压强度变化不大,石膏掺量宜在25%以上。  相似文献   

10.
为了研究煤中的硫含量对铝酸盐水泥的物相组成和浇注料性能的影响,选取以不同硫含量的煤为燃料煅烧的两种不同硫含量的CA-50铝酸盐水泥为研究对象,分析了煤中硫含量的增加对水泥熟料物相组成的影响,并用碳硫仪、XRD、SEM和EDS分析了原料和熟料中硫的含量和存在形式,比较了两种铝酸盐水泥结合浇注料的性能。结果表明:煤中硫含量的增加导致水泥中硫铝酸钙含量的增加,进而影响浇注料中水泥的水化过程,推迟了水化产物产生大量沉淀的时间,降低了最高放热温度,提高了24 h养护后的耐压强度。  相似文献   

11.
白色硅酸盐水泥(白水泥)具有较好的白度,是一种具有装饰效果的胶凝材料。针对该种水泥凝结时间长、早期强度发展慢及收缩变形较大等问题,采用高贝利特硫铝酸盐水泥对白水泥进行改性,系统研究了掺入10%~30%(质量分数)的高贝利特硫铝酸盐水泥对白水泥凝结时间、胶砂强度和自由膨胀率的影响。使用水化微量热仪、XRD、TGA、SEM等方法对复合胶凝体系水化过程、水化产物和微观形貌进行分析。结果表明:高贝利特硫铝酸盐水泥增大了白水泥水化放热率,显著缩短了白水泥的凝结时间;改性后的白水泥水化产物生成了大量的AFt,穿插生长在C-S-H凝胶中,消耗掉了部分Ca(OH)2,使结构更加致密,强度更高,膨胀性能更好。  相似文献   

12.
以镍渣替代铁粉制备道路硅酸盐水泥熟料,研究了生料的易烧性,测定了熟料的f-CaO含量,采用X射线衍射,扫描电子显微镜等手段,对水泥熟料的矿物组成、强度、水化产物等进行了分析研究.结果表明:掺入适量镍渣煅烧的熟料f-CaO含量较低,生料的易烧性良好;熟料水化后水化程度好,有较高的抗折强度.当镍渣掺入量为10%,煅烧温度为1370 ℃时,28 d抗压强度可达75.2 MPa,抗折强度可达11.2 MPa.  相似文献   

13.
通过固定硅酸盐水泥熟料率值,改变硫铝酸锶钙矿物的含量,研究了阿利特-硫铝酸锶钙水泥的合成与性能。利用X射线衍射、扫描电镜与能谱分析、岩相分析等测试手段分析了阿利特-硫铝酸锶钙水泥熟料的组成和结构。结果表明,硫铝酸锶钙矿物与硅酸盐熟料矿物可以共存,其最佳引入量为6%~12%,在1350~1380℃温度范围烧成时结晶较好。在上述条件下制备的阿利特-硫铝酸锶钙水泥的ld、3d和28d抗压强度最高分别达到30.5MPa、58.4MPa和122.2MPa。  相似文献   

14.
以Texaco气化炉渣、石灰石、粘土和铁粉为原料制备硅酸盐水泥熟料,分别采用X射线衍射仪、金相显微镜对该熟料的物相以及岩相结构进行分析,掺加适量石膏后,依据国标检测水泥的标准稠度用水量、安定性、凝结时间以及龄期强度,推断出制备水泥的标号.结果表明:(1)制备的水泥熟料主要矿相为硅酸三钙、硅酸二钙、铝酸三钙、铁酸钙.(2)当粘土加入量为5%,烧成温度为1450℃时,烧制的水泥28 d抗折强度、抗压强度分别为8.0 MPa、50.9 MPa,可推断其标号为42.5水泥.  相似文献   

15.
利用化学分析法、X射线衍射分析(XRD)、扫描电子显微镜(SEM)、热重分析(TG-DSC)等检测手段对电解锰渣、镁渣的化学组分、矿物组成、物化性能进行分析.根据分析结果,合理设计以锰渣、镁渣为原料制备硫铝酸盐水泥熟料的配比方案,并考察烧结温度对熟料性质的影响.在制备的水泥熟料中掺入一定量的石膏可制备出早强、快硬的硫铝酸盐水泥.在此过程中测定水化放热过程,并分析石膏掺量与水泥抗折和抗压强度的关系,确定最佳的石膏掺量.实验结果表明,电解锰渣、镁渣可以作为有价值的原料制备硫铝酸盐水泥熟料,两种废渣的掺比可分别达到21%,烧结过程的最佳温度为1260 ℃,保温时间为30 min,此时烧结出的试样的矿物相主要为C2S、C4A3S-.当石膏掺量为15%时,放出的水化总热最多,制备出的水泥力学性能最好,28 d的抗折强度为5.1 MPa,抗压强度为31.2 MPa,抗渗等级达到P6,烧制熟料和水化产物将锰渣和镁渣中的重金属有效的固化稳定,不易被浸出.  相似文献   

16.
在硫铝酸盐水泥实际工程应用中,硼砂作为常用的缓凝剂,容易导致硫铝酸盐水泥过度缓凝,为了更好调控水泥的凝结时间,本文研究了锂盐对硼砂在硫铝酸盐水泥中作用的影响,主要从凝结时间、抗压强度、水化产物方面进行了分析。结果表明:当硼砂掺量为0.1%(质量分数,下同)时,氢氧化锂能明显缩短硫铝酸盐水泥的凝结时间,降低水泥的抗压强度;当硼砂掺量为0.5%,氢氧化锂掺量大于0.07%时,水泥的凝结时间大幅度缩短,早期抗压强度随氢氧化锂掺量增加而略微提高,后期强度略微降低;在掺加硼砂的硫铝酸盐水泥体系中,锂盐的掺入不会改变水泥水化产物的种类,当硼砂掺量为0.5%时,1 d水化产物钙矾石衍射峰强度显著降低,28 d钙矾石衍射峰强度变化不明显。  相似文献   

17.
利用循环流化床固硫灰替代石膏及部分石灰石和铝矾土作为原料制备贝利特-硫铝酸钙水泥熟料,并对此进行了探索研究。运用TG-DTA和XRD等分析方法分别确定了生料的煅烧温度和熟料的矿物组成,并对熟料的物理力学性能进行了检测。试验表明,当固硫灰掺量在30%左右时,制备的熟料3d抗压强度达到34MPa以上,28d抗压强度达到80MPa以上,因此利用固硫灰替代部分原料烧制贝利特一硫铝酸钙水泥熟料是可行的。  相似文献   

18.
张五怡  聂松  徐名凤  周健  李辉 《硅酸盐通报》2022,41(9):2979-2992
基于我国提出的“双碳”战略目标,水泥行业应针对其高碳排放问题制定脱碳计划,因此,低碳水泥的研发和应用迫在眉睫。高贝利特硫铝酸盐水泥是一种在节能减排的同时能够资源化利用含铝工业废弃物的新型低碳水泥,未来也将会是一种具有高强度的低成本水泥。因此,高贝利特硫铝酸盐水泥的研发促进了水泥行业的绿色化发展。然而,水泥矿物组成中高活性无水硫铝酸钙含量较低,导致水泥石早期强度较低。对水泥早期活性进行研究可提升水泥强度,进而扩大其应用范围。本文通过简述高贝利特硫铝酸盐水泥的组成、特点和研究现状,从水泥主要矿物硅酸二钙、无水硫铝酸钙的活化和水泥矿物组成设计优化三个方面总结了影响高贝利特硫铝酸盐水泥活性的因素,旨在为高性能水泥的研制提供理论指导。  相似文献   

19.
杨林  严云  胡志华  周科  李正银 《水泥》2012,(7):7-10
基于硫铝酸盐水泥、硅酸盐水泥各自的特点,研究了二者复配后的标准稠度用水量、凝结时间、水化热效应、胶砂强度、膨胀性、水化产物的物相及微观形貌。结果表明,复配水泥的标准稠度用水量因复配比例不同而变化,凝结时间相对于占主导地位的单组分水泥明显缩短;复配水泥的早期水化速率得到提高,1d、7d的水化放热量均低于占主导地位的单组分水泥;28d抗压、抗折强度低于任何单组分水泥;膨胀性的大小取决于两种水泥的复配比例;硫铝酸盐水泥与硅酸盐水泥的复配使二者的水化相互促进,随着硫铝酸盐水泥掺量的增加,Ca(OH)2相的衍射峰减弱,AFt相的衍射峰增强;纯硅酸盐水泥水化后的微观形貌是致密的,而与硫铝酸盐水泥复配后则出现微观裂纹。  相似文献   

20.
采用化学纯试剂为原料,将硫铝酸钡钙矿物引入到贝利特熟料矿物体系中,合成了贝利特-硫铝酸钡钙水泥.本文主要研究了 CaF2 对熟料矿物组成和水泥性能的影响.研究结果表明,CaF2 能够加快熟料中f-CaO的吸收,促进C2.75B1.25A3(S)矿物形成,提高水泥的早期强度.当CaF2 在熟料中的掺人量为0.6%时,贝利特.硫铝酸钡钙水泥的 3d 和 28d 抗压强度分别达到 26.8 MPa和 83.4 MPa,展现了良好的力学性能.利用 XRD,SEM-EDS 和岩相分析等测试手段分析了水泥熟料的组成和结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号