首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
I. Vince  O. Vince 《New Astronomy》2010,15(8):669-677
The spectral region in the vicinity of 5394 Å contains three prominent photospheric spectral lines, which can be used as a solar plasma diagnostic tool. The occurrence of telluric lines in this region is a potential source of systematic and random errors in these solar spectral lines. The goal of our investigation was to determine the telluric line contamination of this interesting spectral region. Several series of high-resolution solar spectra within an interval of about 4 Å around the 5394 Å wavelength were observed at different zenith distances of the Sun. Comparison of these spectra has permitted identification of telluric lines in this spectral interval. The observations were carried out with the horizontal solar spectrograph of the Heliophysical Observatory in Debrecen. Telluric feature blending was identified in the blue and red wings of the Fe I 5393.2 Å line, and in the local continuum of the Mn I 5394.7 Å line. The blue wing of the Fe I 5395.2 Å line is contaminated by a weak telluric feature too. The red continuum of this line has a more prominent telluric contamination. A dozen of water vapor telluric lines that determined the observed telluric features were identified in this spectral interval. The profiles of three telluric lines that have a significant influence on both the profiles of solar spectral lines and the level of local continuum were derived, and the variation of their parameters (equivalent width and central depth) with air mass were analyzed.  相似文献   

2.
Ramesh  K.B.  Nagabhushana  B.S.  Varghese  B.A. 《Solar physics》2001,199(1):81-95
Analysis of the intensity maps of Fexiv emission at =5303 Å obtained from the observations of ground-based coronagraphs during the sunspot minimum period 1985 and 1986 shows the persistent presence of localized strong emissions. Typical emission intensities associated with the active regions were found to be about 5 to 20 times stronger than the unperturbed corona. Using Stanford magnetograms we identified strong magnetic field gradients in those active regions, with a minimum threshold gradient of 3 × 10–5 G km–1, associated with such strong emissions. From our sample we infer that the flux emergence within or in the vicinity of a persistent active region seems to play an important role in the activity associated with the enhancement in 5303 Å emission.  相似文献   

3.
Ramesh  K.B. 《Solar physics》1998,183(2):295-303
The association of Lomnický tít data of coronal green line irradiance (CI) to photospheric magnetic activity is studied for the years 1975–1994 using the Carrington rotation averaged photospheric magnetic flux data. It is found that the CI correlates well with photospheric magnetic flux of active regions and the total disk-integrated magnetic flux on longer time scales (11-year solar cycle) and fails (about 50% of the time) to show a strong dependence on shorter time scales. A comparison of the association of CI and of the 10.7 cm radio flux with the photospheric magnetic flux data indicated that the CI might basically represent the background coronal irradiance.  相似文献   

4.
We calculated the temperature response of the 171 Å passbands of the Sun Watcher using APS detectors and image Processing (SWAP) instrument onboard the PRoject for OnBoard Autonomy 2 (PROBA2) satellite. These results were compared to the temperature responses of the Extreme Ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO), the Transition Region and Coronal Explorer (TRACE), the twin Extreme Ultraviolet Imagers (EUVI) onboard the Solar TErrestrial RElations Observatory (STEREO) A and B spacecraft, and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). Multiplying the wavelength-response functions for each instrument by a series of isothermal synthetic spectra and integrating over the range 165?–?195 Å produced temperature-response functions for the six instruments. Each temperature response was then multiplied by sample differential emission-measure functions for four different solar conditions. For any given plasma condition (e.g. quiet Sun, active region), it was found that the overall variation with temperature agreed remarkably well across the six instruments, although the wavelength responses for each instrument have some distinctly different features. Deviations were observed, however, when we compared the response of any one instrument to different solar conditions, particularly for the case of solar flares.  相似文献   

5.
The past decade has seen a dramatic improvement in the quality of data available at both high (HE: 100 MeV to 100 GeV) and very high (VHE: 100 GeV to 100 TeV) gamma-ray energies. With three years of data from the Fermi Large Area Telescope (LAT) and deep pointed observations with arrays of Cherenkov telescope, continuous spectral coverage from 100 MeV to ∼10 TeV exists for the first time for the brightest gamma-ray sources. The Fermi-LAT is likely to continue for several years, resulting in significant improvements in high energy sensitivity. On the same timescale, the Cherenkov Telescope Array (CTA) will be constructed providing unprecedented VHE capabilities. The optimisation of CTA must take into account competition and complementarity with Fermi, in particularly in the overlapping energy range 10–100 GeV. Here we compare the performance of Fermi-LAT and the current baseline CTA design for steady and transient, point-like and extended sources.  相似文献   

6.
Plasma temperature diagnostics in solar flares and active regions has been carried out using data from the SPIRIT spectroheliograph onboard the CORONAS-F satellite. The temperature distribution of the differential emission measure (DEM) has been determined from the relative intensities of spectral lines recorded in the spectral range 280–330 Å in the period from 2001 to 2005. Analysis of these distributions has led to the conclusion about the existence of active regions with various “characteristic” temperature compositions. The presence of a hot plasma with temperatures logT = 6.8?7.2 in active regions has been established for the first time from XUV spectroscopic data and monochromatic X-ray line images. The DEM distribution for intense long-decay flares has also been obtained for the first time and a similarity of the temperature compositions for flares of different classes at the decay phase has been found. The spectra have been modeled on the basis of the calculated DEMs. The systematic discrepancies between the calculated and measured line intensities are discussed.  相似文献   

7.
Skomorovsky  V.I.  Firstova  N.M.  Kashapova  L.K.  Kushtal  G.I.  Boulatov  A.V. 《Solar physics》2001,199(1):37-45
A new two-bandpass birefringent filter has been produced at ISTP, Irkutsk for the investigation of the fine structure of the chromosphere. One filter passband is centered on the Hei 10830 Å line, the second one is centered on H. The FWHM of the Hei 10830 Å passband is 0.46 Å and of the H passband is 0.3 Å. A large number of filtergrams were obtained with the filter at the Sayan observatory. At the same time, spectral observations with high spatial and spectral resolution were carried out by the large solar vacuum telescope at the Baikal Observatory. We selected 29 `dark point' spectra with sizes from 2 to 13, as well as `dark points' on the filtergrams. Comparison of spectrograms and filtergrams has shown a good agreement of their size and intensity in relation with the surrounding chromosphere as well as the absence of primary line-of-sight velocities in both observation types. From spectral observations, the depth of 10830 Å is over 30% for some `dark points', and the FWHM is more than 1 Å. Hei 10830 Å line profiles in `dark points' are more deep and wide than in quiet regions. The optical depth of the chromosphere in `dark points' is estimated. Comparison with the unperturbed chromosphere showed that `dark points' in Hei 10830 Å are more optically thin than the nearby chromosphere.  相似文献   

8.
Vertical distributions and spectral characteristics of Titan’s photochemical aerosol and stratospheric ices are determined between 20 and 560 cm?1 (500–18 μm) from the Cassini Composite Infrared Spectrometer (CIRS). Results are obtained for latitudes of 15°N, 15°S, and 58°S, where accurate temperature profiles can be independently determined.In addition, estimates of aerosol and ice abundances at 62°N relative to those at 15°S are derived. Aerosol abundances are comparable at the two latitudes, but stratospheric ices are ~3 times more abundant at 62°N than at 15°S. Generally, nitrile ice clouds (probably HCN and HC3N), as inferred from a composite emission feature at ~160 cm?1, appear to be located over a narrow altitude range in the stratosphere centered at ~90 km. Although most abundant at high northern latitudes, these nitrile ice clouds extend down through low latitudes and into mid southern latitudes, at least as far as 58°S.There is some evidence of a second ice cloud layer at ~60 km altitude at 58°S associated with an emission feature at ~80 cm?1. We speculate that the identify of this cloud may be due to C2H6 ice, which in the vapor phase is the most abundant hydrocarbon (next to CH4) in the stratosphere of Titan.Unlike the highly restricted range of altitudes (50–100 km) associated with organic condensate clouds, Titan’s photochemical aerosol appears to be well-mixed from the surface to the top of the stratosphere near an altitude of 300 km, and the spectral shape does not appear to change between 15°N and 58°S latitude. The ratio of aerosol-to-gas scale heights range from 1.3–2.4 at about 160 km to 1.1–1.4 at 300 km, although there is considerable variability with latitude. The aerosol exhibits a very broad emission feature peaking at ~140 cm?1. Due to its extreme breadth and low wavenumber, we speculate that this feature may be caused by low-energy vibrations of two-dimensional lattice structures of large molecules. Examples of such molecules include polycyclic aromatic hydrocarbons (PAHs) and nitrogenated aromatics.Finally, volume extinction coefficients NχE derived from 15°S CIRS data at a wavelength of λ = 62.5 μm are compared with those derived from the 10°S Huygens Descent Imager/Spectral Radiometer (DISR) data at 1.583 μm. This comparison yields volume extinction coefficient ratios NχE(1.583 μm)/NχE(62.5 μm) of roughly 70 and 20, respectively, for Titan’s aerosol and stratospheric ices. The inferred particle cross-section ratios χE(1.583 μm)/χE(62.5 μm) appear to be consistent with sub-micron size aerosol particles, and effective radii of only a few microns for stratospheric ice cloud particles.  相似文献   

9.
Miroshnichenko  L.I.  Pérez EnrÍquez  R.  Mendoza  B. 《Solar physics》1999,186(1-2):381-400
It is widely accepted now that a significant fraction of the solar energetic particles (SEPs) observed at 1 AU after major solar flares are actually accelerated at a CME-driven shock. In addition, in the emerging new paradigm for SEP acceleration in different sources at or near the Sun, the existence of two types of flares – impulsive and gradual – is recognized. Within this concept, it is tempting also to separate SEPs into two groups – interacting and escaping – and to derive their 'source spectra' from observational data on various flare emissions (protons, gamma rays, neutrons, etc.). By different techniques, those spectra have been reconstructed for 80 solar proton events (SPE) in 1949–1991. In this paper, all available data on the source spectra of solar protons are summarized and revised. We discuss in detail existing uncertainties in the derived spectral indexes, consider other methodological problems involved in this study, and suggest several possible lines for the future investigations of solar flares and SCRs using the source spectrum data. It is noted that some peculiarities of the spectra, for instance, spectral steepening for high energies, may be characteristic of large events of the 23 February 1956 type.  相似文献   

10.
To study the accretional growth of rimmed chondrules and their agglomerates in the solar nebula, we measured the restitution coefficients, ε, and the sticking velocities to a porous silica layer, vc, by impacting the silica layer with a glass ball at velocities from 0.1 to 80 m s?1. We used a porous silica layer covering a basalt block with thicknesses ranging from 1/5 of the glass ball radius to equal to the glass ball radius as a rimmed chondrule analogue, and the porosity of the silica layer was set to be 70%, 80%, 85%, and 90%. Collisional experiments were conducted by means of the free fall method or by the use of a spring gun or a gas gun, allowing us to vary the impact velocity. We used a laser displacement meter to estimate the impact and rebound velocities as well as the acceleration during the collision at impact velocities below 1 m s?1. As a result, the sticking velocity, vc, of 90%- and 85%- porosity layers with a thickness equal to 1/2 of the glass ball diameter was 0.44 and 2.4 m s?1, respectively. On the other hand, we found a distinct barrier to sticking for smaller-porosity layers: the silicate layer with a porosity smaller than 80% never exhibited sticking at any impact velocity below 1 m s?1. Instead, we observed a rebound effect with restitution coefficients larger than 0.2. In the case of a silica layer with a porosity smaller than 80%, we observed the sub-sticking condition defined by ε < 0.1 at velocities extending from 5 m s?1 to 70 m s?1.  相似文献   

11.
This review summarises what we have learnt in the last two decades based on H i 21 cm absorption observations about the cold interstellar medium (ISM) in the central regions of active galaxies and about the interplay between this gas and the active nucleus (AGN). H i absorption is a powerful tracer on all scales, from the parsec-scales close to the central black hole to structures of many tens of kpc tracing interactions and mergers of galaxies. Given the strong radio continuum emission often associated with the central activity, H i absorption observations can be used to study the H i near an active nucleus out to much higher redshifts than is possible using H i emission. In this way, H i absorption has been used to characterise in detail the general ISM in active galaxies, to trace the fuelling of radio-loud AGN, to study the feedback occurring between the energy released by the active nucleus and the ISM, and the impact of such interactions on the evolution of galaxies and of their AGN. In the last two decades, significant progress has been made in all these areas. It is now well established that many radio loud AGN are surrounded by small, regularly rotating gas disks that contain a significant fraction of H i. The structure of these disks has been traced down to parsec scales by very long baseline interferometry observations. Some groups of objects, and in particular young and recently restarted radio galaxies, appear to have a particularly high detection rate of H i. This is interesting in connection with the evolution of these AGN and their impact on the surrounding ISM. This is further confirmed by an important discovery, made thanks to technical upgrades of radio telescopes, namely the presence of fast, AGN-driven outflows of cold gas which give a direct view of the impact of the energy released by AGN on the evolution of galaxies (AGN feedback). In addition, evidence has been collected that clouds of cold gas can play a role in fuelling the nuclear activity. This review ends by briefly describing the upcoming large, blind H i absorption surveys planned for the new radio telescopes which will soon become operational. These surveys will allow to significantly expand existing work, but will also allow to explore new topics, in particular, the evolution of the cold ISM in AGN.  相似文献   

12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号