首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
对机械泵驱动两相冷却系统在模拟太空工作的边界问题条件下散热能力和工作特性进行实验研究,从而得到结论:当系统的热负荷较小而边界温度较低时,放热量变大使系统平均温度降低,造成蒸发段温度无法控制,冷凝器的温度也可能会降到低于工质的凝固点冻结,冷凝段管路也将因固态工质堵塞而无法循环,此时需采取降低储液器设定温度的方法来减小系统的放热量.当系统的热负荷较大而边界温度较高时,系统在冷凝器的放热量较小而使得热负荷无法完全释放时,系统的平均温度上升,造成泵的入口温度达到工质的饱和温度,产生的气泡有可能会对机械泵内的部件产生气蚀,并引起机械泵工作不稳定,无法保证设定的流量循环.实验结论为该类系统的设计与应用提供了可靠的依据.  相似文献   

2.
对系统的控温原理和主要方法进行理论阐述,从而确定采用对储液器温度的主动式控温方法实现对蒸发段工作温度的控制思路.提出"回路直接冷却"和"半导体制冷片--系统回路协同工作"这2种储液器温度控制方法,并且对其控温精度和降温速度等技术进行实验研究.结果表明,改进前,采用"冷回路"向储液器漏热并结合加热器实现温度控制的设计方案控温精度仅为±0.4℃,且在需要快速降低蒸发段工作温度时较难实现;改进后,采用半导体制冷片同系统管路协同运行的方法不仅可控性大大增加,而且降温速度从原来的0.12℃/min提高到0.36℃/min.在模拟外太空边界温度波动幅度的条件下,改进前、后温度控制方法蒸发段的控制精度分别为±0.4℃和±0.1℃,从而克服了该类系统在工作温度控制中降温速度慢、控温精度低的缺点,并可推广到热管、毛细泵驱动回路等类似的航空航天两相冷却系统中.  相似文献   

3.
 对并行蒸发器机械泵驱动两相流冷却系统各个支路散热量不平衡条件下散热特性进行实验研究,结果表明并行蒸发段各支路的流量分配同管路的阻力有关,当上下两侧蒸发器的热量不平衡时,质量流量的分配始终是一个动态的变化过程,其中,热负荷较大的一侧,阻力不断增加,流量逐渐减小,而热负荷较小的一侧流量在不断变大,并且热量差越大,流量差变化越快;当减小并行支路的热量差有利于蒸发段的散热平衡,热量差越小,系统散热稳定性越强。同毛细泵驱动的两相冷却系统相比,机械泵驱动的两相流冷却系统的散热性好,等温性高,热不平衡处理能力强,并行支路热负荷之差可以达到100多倍,并且能够保持较长的稳定运行。  相似文献   

4.
大体积混凝土表面散热系数的数值与边界风速有很密切关系,简单的均匀散热边界假设已经不能满足实际工程中,复杂边界温控计算的需要,提出基于风速的非均匀散热系数边界法.基于此法建立大体积混凝土三维有限元模型,计算其温度场和应力场,并与匀散热系数边界工况比较,分析非均匀散热边界对大体积混凝土温控的影响.  相似文献   

5.
针对某航天机构加载驱动部件提出了一种热变形分析计算方法.利用MARC软件建立了加载驱动部件的有限元模型,通过瞬态传热分析计算出该系统随时间变化的温度场及其他热参数.分别提取10,20,30 min时的加载驱动部件内部温度分布情况,生成温度场文件,并以此作为热载荷进一步求解出各时刻加载驱动部件内的热应力和变形值.分析所得结果可以用作进一步修改和优化航天机构加载驱动部件设计的依据.  相似文献   

6.
采用数值模拟方法,比较了重力场下4种细微循环通道内的热驱动换热现象.4种通道都是一端加热,一端冷却,利用彻体力场下流体的热驱动来实现换热.研究表明,4种循环通道具有相同的热驱动换热规律,并且随着循环通道的增加,热驱动换热能力逐渐增强.因此,将微小循环通道换热运用于涡轮叶片的冷却时可以考虑采用多循环通道,利用流体的自适应性来增强换热.  相似文献   

7.
为研究板翅式换热器流道内混合冷剂沸腾换热规律,建立了竖直矩形小通道内混合冷剂沸腾换热数学物理模型;基于理论推导的汽液相界面交互深度确定方法,采用CFX双流体模型模拟分析了混合冷剂在竖直矩形小通道内上升流沸腾换热规律,并与文献已有经验关联式进行对比分析. 结果表明:由于混合冷剂物性影响,沸腾换热系数随干度增大而降低;由于对流沸腾和核态沸腾换热机理共同作用,沸腾换热系数随质量流率、热流密度增加而增大;同时,模拟与经验关联式对比结果表明,Lazarek换热关联式计算结果与模拟吻合较好,其误差在±15%以内,将其应用于估算竖直矩形小通道内混合冷剂沸腾换热系数具有较高可靠性.   相似文献   

8.
在热电堆数量比n及无量纲电流j变化的条件下,对两级热电制冷器在不同热端温度Th条件下进行性能分析.通过分析不同热端温度条件下净制冷量q*和制冷系数COP的表达式,对参数n,j进行优化,给出了不同优化要求条件下n,j的取值范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号