首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用有限元分析方法,对涂层法制备SiC连续纤维增强钛基复合材料的致密化过程进行了探讨,重点分析了致密化过程中纤维排布方式、纤维体积分数以及热压参数(时间、温度)等因素对致密化过程的影响.结果表明,相比四方纤维排布,六方纤维排布有利于基体涂层填充空隙以及能有效减少致密化过程中基体应力:对于四方和六方两种纤维排布方式,纤维体积分数对致密化过程有重要影响,高的纤维体积分数使得致密化过程变得更为困难;涂层法制备SiC连续纤维增强钛复合材料理想的热压温度不应低于750℃,时间应大于0.2h.  相似文献   

2.
根据石墨纤维增强铝基复合材料(C_f/Al基复合材料)显微组织特征构建了其代表性体积单元(RVE),通过基体合金的延性损伤模型和纤维的最大应力失效模型,建立了基于内聚力界面模型的细观力学有限元模型并结合试验结果验证了其可靠性,在此基础上分析了纤维含量对复合材料横向拉伸损伤演化与力学行为的影响。结果表明,基于正六边形纤维排布RVE建立的细观力学模型能够准确预测复合材料横向拉伸力学性能。横向拉伸过程中首先发生界面损伤,随应变增加界面损伤累积,引起局部界面失效并诱发附近基体合金的损伤与失效,最终导致复合材料横向开裂,拉伸断口呈现界面脱粘和基体合金撕裂共存的微观形貌。提高纤维含量增加了界面数量和面积,从而降低了复合材料横向拉伸弹性模量和极限强度。  相似文献   

3.
针对真空压力浸渗制备的单向碳纤维增强铝基复合材料(CF/Al复合材料),采用细观力学数值模拟和实验相结合的手段研究了其在横向压缩载荷下的损伤演化与断裂力学行为,并分析了界面结合性能和纤维体积分数对复合材料横向压缩力学性能的影响。结果表明:基于纤维对角正方形分布RVE建立的细观力学有限元模型,可以较好地计算预测复合材料横向压缩变形力学行为。压缩变形初期界面首先发生损伤和失效现象,进而诱发界面附近基体合金的局部损伤;随压缩应变增加,界面和基体损伤逐渐发展并导致纤维的失效,复合材料横向压缩断口呈现出界面脱粘和纤维断裂共存的微观形貌。复合材料横向压缩弹性模量和极限强度随着界面强度增大而增大,而受界面刚度的影响较小;在相同界面性能条件下,复合材料横向压缩极限强度和弹性模量均随纤维体积分数的增大而减小。  相似文献   

4.
采用磁控溅射先驱丝法制备SiCf/TC17复合材料,结果表明:复合材料中SiCf纤维呈近六方排布,纤维与基体之间结合紧密,没有出现空洞;复合材料的室温抗拉强度为1 773 MPa,相比TC17基体提高83.3%;复合材料的拉伸断口宏观上属于脆性断裂,断口处有大量的界面分离、纤维拔出,其中界面分离最容易发生在C层与反应层间的界面处.  相似文献   

5.
针对真空压力浸渗制备的单向碳纤维增强铝合金复合材料(CF/Al复合材料),采用细观力学数值模拟与实验结合的方法研究了其横向拉伸损伤演化和断裂力学行为,并分析了界面对复合材料横向拉伸力学性能的影响。结果表明,基于基体合金延性损伤和界面内聚力损伤本构所建立的细观单胞有限元模型,可以实现CF/Al复合材料横向拉伸弹塑性力学响应的计算和预测。复合材料横向拉伸时先后发生界面损伤、界面失效以及基体损伤累积与失效现象,界面损伤脱粘并诱发基体塑性损伤和失效是导致复合材料横向断裂的主要机理。增加界面强度有利于提高横向拉伸屈服强度和极限强度,界面刚度对极限强度影响不大,但增加界面刚度可有效提高复合材料横向拉伸弹性模量。  相似文献   

6.
采用有限元法分析了在残余应力和外加横向载荷作用下纤维体积分数对SiC/Ti-6Al-4V复合材料横向拉伸行为的影响。通过弹簧连接纤维与基体界面的重合节点来模拟界面脱粘。结果表明,在界面结合强度一定时,界面脱粘应力(对应于应力-应变曲线上应变的跳跃)受0°方向界面径向残余应力影响较大;在界面脱粘先于基体屈服时,复合材料失效应力(对应于应力-应变曲线上的水平部分)主要取决于纤维体积分数,且体积分数越低,失效应力越高。  相似文献   

7.
选用M40J碳纤维、KD-Ⅱ型碳化硅纤维和Nextel610型氧化铝纤维为增强体材料,采用真空压力浸渗法制备纤维单向排布,基体合金为ZL301的连续纤维增强铝基复合材料,研究增强纤维对复合材料致密度、界面及力学性能的影响。结果表明:增强纤维对复合材料的致密度有着明显影响,C_f/Al复合材料的致密度最大,达到99.9%,密度最小,仅为2.248g/cm~3,且其纤维排布均匀,组织缺陷最少;不同增强纤维与基体会发生不同程度的界面反应,最后表现为不同的纤维损伤程度,界面层厚度和界面相的大小,Al_2O_3f/Al复合材料未发现明显界面层,SiC_f/Al复合材料和C_f/Al复合材料的界面层厚度分别为275.3 nm和327.4 nm,界面上都发现有短棒状的Al_4C_3相;SiC_f/Al,C_f/Al和Al_2O_3f/Al复合材料的拉伸强度分别为780.3 MPa,670.2 MPa和587 MPa,组织缺陷、纤维损伤和界面结合强度是影响复合材料强度的主要因素。  相似文献   

8.
以Tsai-Wu强度准则为基础,将三维编织复合材料看作横观各向同性材料,从而对Tsai-Wu强度准则的各阶强度张量系数进行简化,提出了一种计算三维编织复合材料拉伸强度的理论方法.计算了不同编织角和纤维体积分数下,三维四向和正交三向编织复合材料的拉伸强度,并探讨了编织角和纤维体积分数对编织复合材料强度性能的影响,计算结果与实验结果符合较好.  相似文献   

9.
采用国产KD-I型SiC纤维为增强体,通过先驱体转化工艺制备了SiC/SiC复合材料.研究了二维织物和针刺毡等纤维排布方式对复合材料显微结构和物理以及力学性能的影响.结果表明,与针刺毡增强SiC/SiC复合材料相比,2D SiC/SiC复合材料的纤维体积分数和密度较高、孔隙率低、所需制备时间短、成本低、面内性能好,但同时损失了Z向性能.在不同工况下应用的SiC/SiC复合材料应根据具体使用要求来选择纤维排布方式.  相似文献   

10.
SiC纤维增强钛基复合材料的横向力学性能   总被引:3,自引:0,他引:3  
采用十字形试样测试分析有C涂层和无C涂层两种SiC纤维增强钛基复合材料的横向力学性能,以横向载荷作用下应力-应变曲线上的非线性拐点计算界面的强度.结果表明,有C涂层的界面横向开裂强度为53 MPa,低于无C涂层的界面开裂强度196 MPa,并且前者在横向载荷作用下沿C涂层与纤维之间开裂,而后者沿反应生成物与基体间开裂;体积分数为30%的多根纤维钛基复合材料的非线性拐点应力低于单根纤维复合材料,这主要是由于残余应力的减少引起,界面强度并没有明显变化.  相似文献   

11.
以M40J碳纤维的2.5D浅交直联编织预制体为增强体,ZL301合金为基体材料,采用真空压力浸渗法,制备纤维体积分数50%的2.5D碳纤维增强铝基复合材料;研究2.5D浅交直联结构复合材料的致密度和微观组织,在室温、350℃和400℃环境下进行经向拉伸力学性能测试并分析其变形断裂行为。结果表明:2.5D复合材料的致密度较高达到96.2%,细观结构完整,纤维排布均匀,微观组织无明显铸造缺陷,界面上大多数区域较为干净,存在棒状的Al_4C_3界面相;2.5D-C_f/Al的室温、350℃和400℃的经向拉伸强度分别为531、451和408 MPa,材料的高温强度损失率仅为23%;其应力-应变曲线呈现明显非线性特征,复合材料的室温和高温拉伸断裂过程可以分为3个阶段,即基体承载阶段、纤维承载阶段、损伤与断裂阶段。  相似文献   

12.
热压工艺对碳纤维—铜复合材料横向断裂强度影响   总被引:2,自引:3,他引:2  
采用热压法制碳纤维-铜复合材料,其中碳纤维呈单向分布。研究了热压工艺对其横向断裂强度的影响,结果表明:随压力、时间延长,复合材料横向强度增加,但到达一定程度后,其横向强度不变,温度小于700℃时,复合材料强度随温度增加而增加,当温度在大于700℃时,随温度增加强度反而下降,扫描电镜观察断口表明,复合材料断裂有二种模型:(1)基体断裂;(2)纤维和铜界面断裂。  相似文献   

13.
以石墨纤维三维五向织物为增强体,铝合金ZL301为基体材料,采用真空辅助压力浸渗法制备了三维五向增强Cf/Al复合材料,研究了不同温度制备的复合材料微观组织特征和界面反应程度,测试了复合材料在室温和高温下的拉伸力学性能并分析了其断口形貌。结果表明:复合材料相对致密度随制备温度提高而增加,纤维局部偏聚现象也明显减少,与此同时,界面反应物Al4C3相随制备温度提高而显著增多,530℃到570℃复合材料室温拉伸极限强度随组织缺陷减少而增加,570℃到600℃复合材料室温极限拉伸强度随界面反应程度增大而显著降低;高温拉伸极限强度随制备温度提高而增加,适当提高界面反应程度有利于提高复合材料高温力学性能,高温拉伸中基体合金回复软化和界面结合强度弱化促进了复合材料断裂过程中的纤维拔出与界面滑移。  相似文献   

14.
选用单向排布SiC纤维预制体为增强体材料,ZL301合金为基体材料,纤维预热温度选取500、530、550℃,制备纤维体积分数为40%的连续SiCf/Al复合材料,研究了不同纤维预热温度对连续SiC_f/Al复合材料的相组成、纤维损伤和力学性能的影响。结果表明,随着纤维预热温度上升,纤维的损伤越严重,预热500℃的纤维抗拉强度最高,为1 827MPa,是SiCf纤维原丝强度的77.7%,预热550℃时的纤维抗拉强度最低,仅为1 360MPa;纤维预热温度对连续SiC_f/Al复合材料的力学性能有较大影响,纤维预热温度为530℃时复合材料的抗拉强度最高,为483MPa,断口呈现韧性断裂特征,表现出适中的界面结合强度。  相似文献   

15.
分别以ZL102、ZL114A、ZL205A及ZL301这4种合金为基体,以Si C纤维为增强体,采用真空气压浸渗法制备SiC_f体积分数为40%的连续SiC_f/Al复合材料。采用TEM和SEM对不同基体合金的SiC_f/Al复合材料界面及断口形貌进行观察,并测试其拉伸强度。结果表明:不同基体合金的连续SiC_f/Al复合材料界面形貌存在明显差异,其力学性能及断口形貌亦存在较大的差异。其中,SiC_f/ZL102复合材料的界面存在细小的针状Al_4C_3相,无明显界面层,呈弱界面结合,平均拉伸强度为615.7 MPa,断口纤维拔出现象明显;SiC_f/ZL205A复合材料的界面存在块状的Al_4C_3相及CuAl_2相,呈强界面结合,平均拉伸强度为385.1 MPa,断口平齐;SiC_f/ZL114A复合材料的界面结合较SiC_f/ZL102复合材料的强,平均拉伸强度为475.9 MPa;SiC_f/ZL301复合材料的界面存在棒状Al_4C_3相,大量Mg元素的富集降低界面反应,界面结合强度适中,平均拉伸强度为769.3 MPa,断口出现韧窝,基体改变裂纹横向传播的方向。  相似文献   

16.
界面优化是提高铝基复合材料最为有效的手段。通过化学镀工艺成功制备0.2 μm厚Ni-Co-P合金镀层修饰的玄武岩纤维,并通过真空热压烧结工艺合成Ni-Co-P镀层修饰玄武岩纤维增强2024Al复合材料(BF(Ni-Co-P)/Al)。探究了Ni-Co-P镀层对BF(Ni-Co-P)/Al复合材料界面结构及拉伸性能的影响机制。结果表明:复合材料中Ni-Co-P镀层形成稳定的Ni-Co-P中间层,不仅抑制了玄武岩纤维与铝合金基体间的有害界面反应,且优化了二者间的结合强度。BF(Ni-Co-P)/Al复合材料密度及硬度明显优于BF/Al复合材料,且当玄武岩纤维体积分数为30vol%时,BF(Ni-Co-P)/Al复合材料屈服强度和抗拉伸强度分别为252和360 MPa,大幅高于未修饰纤维增强铝基复合材料和铝合金基体,并表现出渐进累积失效的断裂模式。  相似文献   

17.
采用三维有限元法模拟SiC/Ti-6Al-4V复合材料界面的残余应力分布,分析纤维排列方式对纤维一侧界面残余应力的影响。结果表明,纤维排列方式对纤维一侧界面径向、轴向和周向残余应力均有较大影响,其中纤维六方排列时纤维一侧界面残余应力沿纤维周向分布均匀,且周向残余应力小,不易在界面形成径向裂纹,是较为理想的纤维排列方式。  相似文献   

18.
采用三维有限元法模拟SiC/Ti-6Al-4V复合材料界面的残余应力分布,分析纤维排列方式对纤维一侧界面残余应力的影响。结果表明,纤维排列方式对纤维一侧界面径向、轴向和周向残余应力均有较大影响,其中纤维六方排列时纤维一侧界面残余应力沿纤维周向分布均匀,且周向残余应力小,不易在界面形成径向裂纹,是较为理想的纤维排列方式。  相似文献   

19.
杜宇  刘畅  原文慧 《表面技术》2023,52(7):239-249
目的 研究钻削制孔表面分层损伤与拉伸载荷下开孔碳纤维增强聚醚醚酮(CF/PEEK)复合材料表面应变分布的相关性。方法 通过对CF/PEEK复合材料层合板进行钻削制孔实验,分析不同进给速度对钻削温度、钻削轴向力、制孔出口表面分层和孔壁表面损伤的影响。采用数字图像相关技术(DIC)和力学实验相结合的方法,研究分层损伤程度对开孔CF/PEEK复合材料层合板拉伸性能和表面应变分布的影响。使用扫描电镜观测开孔试件的断裂形貌,分析开孔试件受拉伸载荷时的破坏模式。结果 随着进给速度的增加,钻削温度降低,钻削轴向力提高,出口表面分层和孔壁损伤程度加剧。随着分层损伤程度的增加,层合板的拉伸强度呈现出降低的趋势,试件的拉伸强度从558.4 MPa降低到525.63 MPa,降低了5.87%。在中应力和高应力状态下,试件x方向的最大负应变随着分层损伤程度的增加而增加。在高应力状态下,试件y方向的最大正应变随着分层损伤程度的增加而增加。试件的断裂方式主要是基体开裂、分层和纤维撕裂,断口有纤维脱落和纤维拔出,垂直于载荷方向的纤维破坏模式为剥离破坏,与载荷方向一致的纤维破坏模式为拉伸破坏。结论 钻削制孔表面分层损...  相似文献   

20.
利用挤压铸造法制备了 Al2 O3纤维增强 Al合金复合材料 ,对其界面孔隙率进行了测定 ,结合拉伸强度数据 ,讨论孔隙率对复合材料强度的影响 ;并通过有限元计算 ,分析了与拉伸轴平行、成 45°及与拉伸轴垂直的 3种纤维模型 ,得出纤维、基体、界面处应力分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号