首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cardiomyopathy is a pathological condition characterized by cardiac pump failure due to myocardial dysfunction and the major cause of advanced heart failure requiring heart transplantation. Although optimized medical therapies have been developed for heart failure during the last few decades, some patients with cardiomyopathy exhibit advanced heart failure and are refractory to medical therapies. Desmosome, which is a dynamic cell-to-cell junctional component, maintains the structural integrity ...  相似文献   

3.
4.
One of the recent breakthroughs in stem cell research has been the reprogramming of human somatic cells to an embryonic stem cell (ESC)-like state (induced pluripotent stem cells, iPS cells). Similar to ESCs, iPS cells can differentiate into derivatives of the three germ layers, for example cardiomyocytes, pancreatic cells or neurons. This technique offers a new approach to investigating disease pathogenesis and to the development of novel therapies. It may now be possible to generate iPS cells from somatic cells of patients who suffer from vascular genetic diseases, such as hereditary haemorrhagic telangiectasia (HHT). The iPS cells will have a similar genotype to that of the patient and can be differentiated in vitro into the cell type(s) that are affected in the patient. Thus they will serve as excellent models for a better understanding of mechanisms underlying the disease. This, together with the ability to test new drugs, could potentially lead to novel therapeutic concepts in the near future. Here we report the first derivation of three human iPS cell lines from two healthy individuals and one HHT patient in the Netherlands. The iPS cells resembled ESCs in morphology and expressed typical ESC markers. In vitro, iPS cells could be differentiated into cells of the three germ layers, including beating cardiomyocytes and vascular cells. With this technique it will be possible to establish human cardiovascular disease models from patient biopsies provided by the principal hospitals in the Netherlands. (Neth Heart J 2010;18:51-4.)  相似文献   

5.
We tested the hypothesis that granulocyte colony-stimulating factor (G-CSF) administration would enhance the efficacy of cellular cardiomyoplasty with embryonic stem (ES) cell-derived cardiomyocytes in infarcted myocardium. Three weeks after myocardial infarction by cryoinjury, Sprague-Dawley rats were randomized to receive either an injection of medium, ES cell-derived cardiomyocyte transplantation, G-CSF administration, or a combination of G-CSF administration and ES cell-derived cardiomyocyte transplantation. Eight weeks after treatment, the cardiac tissue formation, neovascularization, and apoptotic activity in the infarct regions were evaluated by histology and immunohistochemistry. The left ventricular (LV) dimensions and function of the treated heart were evaluated by echocardiography. Transplanted ES cell-derived cardiomyocytes survived and participated in the myocardial regeneration in the infarcted heart. A combination of G-CSF treatment and ES cell-derived cardiomyocyte transplantation significantly promoted angiogenesis and reduced the infarct area and cell apoptosis in the infarcted myocardium compared with ES cell-derived cardiomyocyte transplantation alone. The combination therapy also attenuated LV dilation, as compared with ES cell-derived cardiomyocyte transplantation alone. G-CSF treatment can enhance the efficacy of cellular cardiomyoplasty by ES cell-derived cardiomyocyte transplantation to treat myocardial infarction.  相似文献   

6.
Cao N  Liao J  Liu Z  Zhu W  Wang J  Liu L  Yu L  Xu P  Cui C  Xiao L  Yang HT 《Cell research》2011,21(9):1316-1331
The recent breakthrough in the generation of rat embryonic stem cells (rESCs) opens the door to application of gene targeting to create models for the study of human diseases. In addition, the in vitro differentiation system from rESCs into derivatives of three germ layers will serve as a powerful tool and resource for the investigation of mammalian development, cell function, tissue repair, and drug discovery. However, these uses have been limited by the difficulty of in vitro differentiation. The aims of this study were to establish an in vitro differentiation system from rESCs and to investigate whether rESCs are capable of forming terminal-differentiated cardiomyocytes. Using newly established rESCs, we found that embryoid body (EB)-based method used in mouse ESC (mESC) differentiation failed to work for the serum-free cultivated rESCs. We then developed a protocol by combination of three chemical inhibitors and feeder-conditioned medium. Under this condition, rESCs formed EBs, propagated and differentiated into three embryonic germ layers. Moreover, rESC-formed EBs could differentiate into spontaneously beating cardiomyocytes after plating. Analyses of molecular, structural, and functional properties revealed that rESC-derived cardiomyocytes were similar to those derived from fetal rat hearts and mESCs. In conclusion, we successfully developed an in vitro differentiation system for rESCs through which functional myocytes were generated and displayed phenotypes of rat fetal cardiomyocytes. This unique cellular system will provide a new approach to study the early development and cardiac function, and serve as an important tool in pharmacological testing and cell therapy.  相似文献   

7.
Evaluation of antiangiogenic activity of marine sponge derived azumamides by the in vitro vascular organization model using mouse induced pluripotent stem (iPS) cells was carried out. Azumamide E (5) strongly inhibited in vitro angiogenesis from iPS cells at 1.9 μM while azumamide A (1) showed only weak inhibition at 19 μM. These results were well correlated with HDAC inhibitory activity of these compounds, revealing the prospect of azumamides as the probe molecules useful for stem cell chemical biology.  相似文献   

8.
Conditioned media (CM) from various cell types contain significant levels of paracrine factors. Recently, therapeutic properties of CM derived from stem cells have been revealed. Based on the fact that heart cancer is extremely rarely, we hypothesized that the CM obtained from human pluripotent stem cell-derived cardiomyocytes might inhibit cancer cell growth and survival. To this end, lung cancer cell line A549 along with human foreskin fibroblasts (HFF) were treated with serial concentrations of cardiomyocyte CM (CCM) or fibroblast CM (FCM). We found that CCM markedly reduced the viability of lung cancer cells, while FCM did not compromise the viability of neither cancer cells nor HFF cells. Furthermore, we determined an optimized CCM concentration, 30 mg/mL, at which the growth, clonogenicity, and migration of A549 and Calu6 lung cancer cell lines were substantially impaired, whereas FCM did not influence these properties. Moreover, lung cancer cells exhibited cell cycle regulation upon treatment with CCM and the rate of apoptosis was markedly increased by cardiomyocyte CM in both lung cancer cell lines tested. Finally, in response to CCM treatment, A549 and Calu6 cells expressed lower levels of antiapoptotic and stemness genes, but higher levels of proapoptotic genes. In conclusion, this study provides cellular and molecular evidence for the antitumor ability of secretome obtained from stem cell-derived cardiomyocytes.  相似文献   

9.
Human adipose‐derived stem cells (ASCs) may differentiate into cardiomyocytes and this provides a source of donor cells for tissue engineering. In this study, we evaluated cardiomyogenic differentiation protocols using a DNA demethylating agent 5‐azacytidine (5‐aza), a modified cardiomyogenic medium (MCM), a histone deacetylase inhibitor trichostatin A (TSA) and co‐culture with neonatal rat cardiomyocytes. 5‐aza treatment reduced both cardiac actin and TropT mRNA expression. Incubation in MCM only slightly increased gene expression (1.5‐ to 1.9‐fold) and the number of cells co‐expressing nkx2.5/sarcomeric α‐actin (27.2%versus 0.2% in control). TSA treatment increased cardiac actin mRNA expression 11‐fold after 1 week, which could be sustained for 2 weeks by culturing cells in cardiomyocyte culture medium. TSA‐treated cells also stained positively for cardiac myosin heavy chain, α‐actin, TropI and connexin43; however, none of these treatments produced beating cells. ASCs in non‐contact co‐culture showed no cardiac differentiation; however, ASCs co‐cultured in direct contact co‐culture exhibited a time‐dependent increase in cardiac actin mRNA expression (up to 33‐fold) between days 3 and 14. Immunocytochemistry revealed co‐expression of GATA4 and Nkx2.5, α‐actin, TropI and cardiac myosin heavy chain in CM‐DiI labelled ASCs. Most importantly, many of these cells showed spontaneous contractions accompanied by calcium transients in culture. Human ASC (hASC) showed synchronous Ca2+ transient and contraction synchronous with surrounding rat cardiomyocytes (106 beats/min.). Gap junctions also formed between them as observed by dye transfer. In conclusion, cell‐to‐cell interaction was identified as a key inducer for cardiomyogenic differentiation of hASCs. This method was optimized by co‐culture with contracting cardiomyocytes and provides a potential cardiac differentiation system to progress applications for cardiac cell therapy or tissue engineering.  相似文献   

10.
During biomineralization the organism controls the nature, orientation, size and shape of the mineral phase. The aim of this study was to investigate whether proteins or vesicles that are constitutively released by growing ATDC5 cells have the ability to affect the formation of the calcium phosphate crystal. Therefore, subconfluent cultured ATDC5 cells were incubated for 1 h in medium without serum. Subsequently, medium was harvested and incubated for 24 h in the presence of additional Pi. This resulted in the formation of flat mineralizing structures (FMS), consisting of complex irregularly shaped flat crystals, which occasionally contained fiber-like structures ( approximately 40 microm in size). Without pre-incubation of medium with cells, only small punctate (dot like) calcium phosphate precipitates were observed. The formation of FMS was shown to be caused by soluble factors released by subconfluent ATDC5 cells. Proteomic analysis by mass spectrometry showed that FMS contained a specific set intracellular proteins, serum proteins, and extracellular matrix proteins. Bulk cytosolic proteins derived from homogenized cells or serum proteins did, however, not induce the formation of FMS. Conditioned medium from HeLa, CHO K1, RAW 264.7 and MDCK cells was also capable to form FMS under our experimental conditions. Therefore the formation of FMS seems to be caused by specific soluble factors constitutively released by ADTC5 and other cells. This in vitro model system can be used as a tool to identify factors that affect the shape of the biomineral phase.  相似文献   

11.
12.
Induced pluripotent stem cells(iPSCs) were first generated by Yamanaka and colleagues over a decade ago. Since then, iPSCs have been successfully differentiated into many distinct cell types, enabling tissue-, disease-, and patientspecific in vitro modelling. Cardiovascular disease is the greatest cause of mortality worldwide but encompasses rarer disorders of conduction and myocardial function for which a cellular model of study is ideal. Although methods to differentiate iPSCs into beating cardiomyocytes(iPSC-CMs) have recently been adequately optimized and commercialized, the resulting cells remain largely immature with regards to their structure and function,demonstrating fetal gene expression, disorganized morphology, reliance on predominantly glycolytic metabolism and contractile characteristics that differ from those of adult cardiomyocytes. As such, disease modelling using iPSC-CMs may be inaccurate and of limited utility. However, this limitation is widely recognized, and numerous groups have made substantial progress in addressing this problem. This review highlights successful methods that have been developed for the maturation of human iPSC-CMs using small molecules,environmental manipulation and 3-dimensional(3 D) growth approaches.  相似文献   

13.
In view of the therapeutic potential of cardiomyocytes derived from induced pluripotent stem (iPS) cells (iPS‐derived cardiomyocytes), in the present study we investigated in iPS‐derived cardiomyocytes, the functional properties related to [Ca2+]i handling and contraction, the contribution of the sarcoplasmic reticulum (SR) Ca2+ release to contraction and the b‐adrenergic inotropic responsiveness. The two iPS clones investigated here were generated through infection of human foreskin fibroblasts (HFF) with retroviruses containing the four human genes: OCT4, Sox2, Klf4 and C‐Myc. Our major findings showed that iPS‐derived cardiomyocytes: (i) express cardiac specific RNA and proteins; (ii) exhibit negative force–frequency relations and mild (compared to adult) post‐rest potentiation; (iii) respond to ryanodine and caffeine, albeit less than adult cardiomyocytes, and express the SR‐Ca2+ handling proteins ryanodine receptor and calsequestrin. Hence, this study demonstrates that in our cardiomyocytes clones differentiated from HFF‐derived iPS, the functional properties related to excitation–contraction coupling, resemble in part those of adult cardiomyocytes.  相似文献   

14.
Induced pluripotent stem cells (iPS) can differentiate into cardiomyocytes (CM) and represent a promising form of cellular therapy for heart regeneration. However, residual undifferentiated iPS derivates (iPSD), which are not fully eliminated by cell differentiation or purification protocols, may form tumors after transplantation, thus compromising therapeutic application. Inhibition of stearoyl-coA desaturase (SCD) has recently been reported to eliminate undifferentiated human embryonic stem cells, which share many features with iPSD. Here, we tested the effects of PluriSin#1, a small-molecule inhibitor of SCD, on iPS-derived CM. We found that plurisin#1 treatment significantly decreased the mRNA and protein level of Nanog, a marker for both cell pluripotency and tumor progression; importantly, we provide evidence that PluriSin#1 treatment at 20 µM for 1 day significantly induces the apoptosis of Nanog-positive iPSD. In addition, PluriSin#1 treatment at 20 µM for 4 days diminished Nanog-positive stem cells in cultured iPSD while not increasing apoptosis of iPS-derived CM. To investigate whether PluriSin#1 treatment prevents tumorigenicity of iPSD after cell transplantation, we intramyocardially injected PluriSin#1- or DMSO-treated iPSD in a mouse model of myocardial infarction (MI). DMSO-treated iPSD readily formed Nanog-expressing tumors 2 weeks after injection, which was prevented by treatment with PluriSin#1. Moreover, treatment with PluriSin#1 did not change the expression of cTnI, α-MHC, or MLC-2v, markers of cardiac differentiation (P > 0.05, n = 4). Importantly, pluriSin#1-treated iPS-derived CM exhibited the ability to engraft and survive in the infarcted myocardium. We conclude that inhibition of SCD holds the potential to enhance the safety of therapeutic application of iPS cells for heart regeneration.  相似文献   

15.
Quercetin inhibits in vitro in dose-dependent manner all three peptidase activities in purified 20S proteasome, the inhibitory effect is comparable to that of a specific proteasome inhibitor. The maximum inhibitory effect of quercetin was observed against the chymotrypsin-like activity of 20S proteasome. Similarly, quercetin inhibits the activity of 26S proteasome from proteasomal fraction II (PF II). Determination of proteasome activity in isolated cardiomyocytes has demonstrated 26% inhibition of trypsin-like proteasomal activity (p = 0.03), 63.7% inhibition of chymotrypsin-like activity (p = 0.04), and 34.2% inhibition of peptidyl-glutamyl peptide hydrolase (p = 0.16) activity by quercetin. Quercetin, its water-soluble analogue corvitin, and clastolactacystin-β-lactone, the specific proteasome inhibitor, exert virtually the same effects on cardiomyocytes. At the concentrations of 5 and 10 μM quercetin corvitin caused the decrease in number of living cardiomyocytes and the increase in number of necrotic and apoptotic cells. At the concentration of 2.5 μM quercetin and corvitin reduced substantially the damaging effect of anoxia-reoxygenation on cardiomyocytes and resulted in decrease in number of necrotic and apoptotic cells. The data obtained suggest that mechanisms of the quercetin cardioprotective effect may involve the inhibition of proteasome activity.  相似文献   

16.
Cardiomyocyte apoptosis is an important contributor to the progressive cardiac dysfunction that culminates in congestive heart failure. Bone marrow cells (BMCs) restore cardiac function following ischaemia, and transplanted BMCs have been reported to fuse with cells of diverse tissues. We previously demonstrated that the myogenic conversion of bone marrow stromal cells increased nearly twofold when the cells were co‐cultured with apoptotic (TNF‐α treated) cardiomyocytes. We therefore hypothesized that cell fusion may be a major mechanism by which BMCs rescue cardiomyocytes from apoptosis. We induced cellular apoptosis in neonatal rat cardiomyocytes by treatment with hydrogen peroxide (H2O2). The TUNEL assay demonstrated an increase in apoptosis from 4.5 ± 1.3% in non‐treated cells to 19.0 ± 4.4% (< 0.05) in treated cells. We subsequently co‐cultured the apoptotic cardiomyocytes with BMCs and assessed cell fusion using flow cytometry. Fusion was rare in the non‐treated control cardiomyocytes (0.3%), whereas H2O2 treatment led to significantly higher fusion rates than the control group (< 0.05), with the highest rate of 7.9 ± 0.3% occurring at 25 μM H2O2. We found an inverse correlation between cell fusion and completion of cardiomyocyte apoptosis (R2 = 0.9863). An in vivo mouse model provided evidence of cell fusion in the infarcted myocardium following the injection of BMCs. The percentage of cells undergoing fusion was significantly higher in mice injected with BMCs following infarction (8.8 ± 1.3%) compared to mice that did not undergo infarction (4.6 ± 0.6%, < 0.05). Enhancing cell fusion may be one method to preserve cardiomyocytes following myocardial infarction, and this new approach may provide a novel target for cardiac regenerative therapies.  相似文献   

17.
An experimental model of mouse embryonic stem cell (ESC) differentiation into cells with contractile activity (similar to that of cardiomyocytes) without embryoid body formation has been obtained. The main factor inducing ESC differentiation along the cardiomyocyte pathway is recombinant cytokine LIF added in the course of long-term culturing. The contractile cells respond positively to treatment with isoproterenol, a cardioactive drug, which is evidence for the presence in these cells of β-adrenoreceptors characteristic of terminally differentiated mammalian cardiomyocytes.  相似文献   

18.
Embryonic stem cells (ESCs) are an important source of cardiomyocytes for regenerating injured myocardium. The successful use of ESC-derived cardiomyocytes in cardiac tissue engineering requires an understanding of the important scaffold properties and culture conditions to promote cell attachment, differentiation, organization, and contractile function. The goal of this work was to investigate how scaffold architecture and coculture with fibroblasts influences the differentiated phenotype of murine ESC-derived cardiomyocytes (mESCDCs). Electrospinning was used to process an elastomeric biodegradable polyurethane (PU) into aligned or unaligned fibrous scaffolds. Bioreactor produced mESCDCs were seeded onto the PU scaffolds either on their own or after pre-seeding the scaffolds with mouse embryonic fibroblasts (MEFs). Viable mESCDCs attached to the PU scaffolds and were functionally contractile in all conditions tested. Importantly, the aligned scaffolds led to the anisotropic organization of rod-shaped cells, improved sarcomere organization, and increased mESCDC aspect ratio (length-to-diameter ratio) when compared to cells on the unaligned scaffolds. In addition, pre-seeding the scaffolds with MEFs improved mESCDC sarcomere formation compared to mESCDCs cultured alone. These results suggest that both fiber alignment and pre-treatment of scaffolds with fibroblasts improve the differentiation of mESCDCs and are important parameters for developing engineered myocardial tissue constructs using ESC-derived cardiac cells.  相似文献   

19.
The ability of natural and synthetic opioids to modulate the induction of ornithine decarboxylase (ODC) was investigated in immune cells and cardiomyocytes in culture. In particular, Leu-enkephalin, which shows preference for -receptors, enhanced ODC activity in both thymocytes and cardiomyocytes, whereas the effect of U-50488H, a synthetic -selective agonist, was cell-specific. In thymocytes, U-50488H markedly inhibited the induction of the enzyme elicited by the mitogen concanavalin A (Con A) or by a combined treatment with PMA and A23187, and also reduced basal ODC activity. However the drug did not affect ODC induced by other stimuli. The inhibition of the induction of ODC activity was accompanied by a reduction of ODC mRNA level and an acceleration of ODC turnover. The action of U-50488H in thymocytes does not appear to be mediated by or other classical opioid receptors lacking both stereospecificity and antagonist sensitivity, but may involve a pertussis toxin-sensitive G protein. Splenocytes also showed the ODC inhibiting effect of U-50488H, although they were less sensitive compared to thymocytes. In contrast, U-50488H enhanced ODC activity in cardiomyocytes and this effect was blocked by a specific -antagonist. In conclusion, these results indicate that some opioid agonists can modulate ODC expression in non neural cells. In particular, -opioid receptors may be involved in the U-50488H action in cardiomyocytes, and a distinct site, linked to inhibition of cell proliferation, may operate in immune cells.  相似文献   

20.
Homeostasis of proteins involved in contractility of individual cardiomyocytes and those coupling adjacent cells is of critical importance as any abnormalities in cardiac electrical conduction may result in cardiac irregular activity and heart failure. Bcl2-associated athanogene 3 (BAG3) is a stress-induced protein whose role in stabilizing myofibril proteins as well as protein quality control pathways, especially in the cardiac tissue, has captured much attention. Mutations of BAG3 have been implicated in the pathogenesis of cardiac complications such as dilated cardiomyopathy. In this study, we have used an in vitro model of neonatal rat ventricular cardiomyocytes to investigate potential impacts of BAG3 on electrophysiological activity by employing the microelectrode array (MEA) technology. Our MEA data showed that BAG3 plays an important role in the cardiac signal generation as reduced levels of BAG3 led to lower signal frequency and amplitude. Our analysis also revealed that BAG3 is essential to the signal propagation throughout the myocardium, as the MEA data-based conduction velocity, connectivity degree, activation time, and synchrony were adversely affected by BAG3 knockdown. Moreover, BAG3 deficiency was demonstrated to be connected with the emergence of independently beating clusters of cardiomyocytes. On the other hand, BAG3 overexpression improved the activity of cardiomyocytes in terms of electrical signal amplitude and connectivity degree. Overall, by providing more in-depth analyses and characterization of electrophysiological parameters, this study reveals that BAG3 is of critical importance for electrical activity of neonatal cardiomyocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号