首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的: 探讨miR-335 靶向Rho相关卷曲螺旋形成蛋白激酶1(rho associated coiled-coil forming protein kinase 1,ROCK1)对卵巢癌细胞系SKOV3增殖的调控作用。方法:(1)选取卵巢癌细胞系SKOV3及人正常卵巢上皮细胞系IOSE80,采用RT-PCR检测各组细胞中miR-335表达;采用Western blot检测各组细胞中ROCK1蛋白表达;(2)选取卵巢癌细胞系SKOV3,分别转染miR-335 mimic及mimic control,采用RT-PCR检测细胞中miR-335表达;(3)选取卵巢癌细胞系SKOV3,将SKOV3荧光素酶报告载体与miR-335 mimic共转染,采用荧光素酶活性实验验证miR-335对SKOV3的靶向作用;(4)选取卵巢癌细胞系SKOV3,分为3组,即SKOV3组(转染mimic control)、miR-335 mimic组(转染miR-335 mimic)及miR-335 mimic+ROCK1组(共转染miR-335 mimic+ROCK1),采用MTT法检测各组细胞增殖活性,采用Western blot检测各组细胞中ROCK1蛋白表达,采用RT-PCR检测细胞中Cyclin D1表达。结果: (1)RT-PCR结果显示,卵巢癌细胞SKOV3中miR-335表达显著低于人正常卵巢上皮细胞IOSE80(P < 0.05);Western blot结果显示,卵巢癌细胞SKOV3中ROCK1蛋白表达显著高于人正常卵巢上皮细胞IOSE80(P < 0.05);(2)RT-PCR结果显示,转染miR-335 mimic可使卵巢癌细胞SKOV3中miR-335表达上调,与转染mimic control相比较差异具有统计学意义(P < 0.05);(3)双荧光素酶活性检测结果显示,miR-335 mimic可显著抑制野生型ROCK1-Wt报告载体的荧光素酶活性,但对突变型ROCK1-Mut报告载体的荧光素酶活性并无显著抑制作用;(4)转染miR-335mimic后,卵巢癌细胞SKOV3增殖活性及Cyclin D1表达较阴性对照组显著降低(P < 0.05);而转染miR-335 mimic+ROCK1后,卵巢癌细胞SKOV3增殖活性及Cyclin D1表达较单纯转染miR-335 mimic组显著提高(P < 0.05),但仍显著低于阴性对照组(P < 0.05)。Western blot检测结果显示,转染miR-335mimic后,卵巢癌细胞SKOV3中ROCK1蛋白表达较阴性对照组显著降低(P < 0.05);而转染miR-335 mimic+ROCK1后,ROCK1蛋白表达较单纯转染miR-335mimic组显著增高(P < 0.05),且显著高于阴性对照组(P < 0.05)。结论: miR-335可通过靶向ROCK1抑制卵巢癌细胞系SKOV3增殖。  相似文献   

2.
构建携带错配修复基因hMLH1编码序列全长的真核表达质粒pCAN—hMLHl,并探讨其对卵巢癌细胞顺铂耐药的逆转作用。应用基因重组技术将pET28-hMLHl中的目的基因hMLHl定向克隆到真核表达载体pCAN,经酶切及测序鉴定:分别将pCAN—hMLHl和空质粒pCAN转染进卵巢癌耐药细胞SKOV3/DDP,同时以对顺铂敏感的sKOV3细胞和未转染的SKOV3/DDP细胞作为对照:应用RT-PCR和Westemblo凇测转染前后细胞内hMLHlmRNA和蛋白的表达变4Jc;四甲基偶氮唑蓝(MTT)比色法检测转染前后sKOv3/DDP细胞对顺铂敏感性的变化;Hoechst染色检测转染前后细胞的凋亡。结果提示:pCAN—hMLHl重组质粒经酶切及测序鉴定,表明真核表达质粒构建正确;采用脂质体法转染sKOv3/DDP细胞后,RT-PCR和Westernblot检测到耐药细胞内hMLHl的表达增强:MTT结果显示转染重组质粒后sKOv3/DDP细胞对顺铂的敏感性显著增加;Hoechst染色观察到转染后耐药细胞的凋亡明显增强。该研究成功构建了pCAN.hMLHl重组质粒,在sKOV3/DDP细胞中进行表达,并能增强耐药细胞对顺铂的敏感性,促进耐药细胞的凋亡。  相似文献   

3.
4.
Ovarian cancer (OC) causes more deaths than any other gynecological cancer. Many cellular pathways have been elucidated to be associated with OC development and progression. Specifically, the insulin-like growth factor 1 receptor/insulin receptor substrate 1 (IGF1R/IRS1) pathway participates in OC development. Moreover, accumulating evidence has shown that microRNA deregulation contributes to tumor initiation and progression. Here, our study aimed to investigate the molecular functions and regulatory mechanisms of miR-150, specifically, in OC. We found that the expression of miR-150-5p/3p and their precursor, mir-150, was downregulated in OC tissues; lower mir-150 levels were associated with poor OC patient outcomes. Ectopic mir-150 expression inhibited OC cell growth and metastasis in vitro and in vivo. Furthermore, both IRS1 and IGF1R were confirmed as direct targets of miR-150-5p/3p, and the miR-150-IGF1R/IRS1 axis exerted antitumor effects via the PI3K/AKT/mTOR pathway. Forkhead box protein 3 (FoxP3) positively regulated the expression of miR-150-5p/3p by binding to the mir-150 promoter. In turn, the PI3K/AKT/mTOR pathway downregulated FoxP3 and miR-150-5p/3p. Taken together, these findings indicate that a complex FoxP3-miR-150-IGF1R/IRS1-PI3K/AKT/mTOR feedback loop regulates OC pathogenesis, providing a novel mechanism for miR-150 as a tumor suppressor miRNA in OC.Subject terms: Cancer, Translational research  相似文献   

5.
化疗耐受是乳腺癌复发转移率居高不下、综合治疗效果难以提高的主要瓶颈。前期研究证实,miR-200c-3p在乳腺癌敏感细胞MCF-7中的表达量显著高于耐药细胞MCF-7/5Fu,提示miR-200c-3p可能参与乳腺癌化疗增敏,但是具体机制不详。生物信息学预测联合双荧光素酶报告基因实验证实,miR-200c-3p靶向调控FOSL1,且在多种肿瘤中miR-200c-3p与FOSL1表达负相关。实时荧光定量PCR技术和Western印迹技术证实,FOSL1在耐药细胞MCF-7/5Fu中的表达量显著高于亲本细胞MCF-7。在MCF-7细胞中,过表达FOSL1能够显著提高该细胞对5-Fu的化疗耐受;在MCF-7/5Fu中,使用siRNA技术沉默FOSL1,将提高该细胞对5-Fu的化疗敏感性。此外,MTT实验还发现,miR-200c-3p抑制剂能够显著上调MCF-7细胞对5-Fu的耐受,但是在此细胞中干扰FOSL1的表达,又可以增加其对5-Fu的化疗敏感性;miR-200c-3p mimics显著增加MCF-7/5Fu细胞的化疗敏感性,上调FOSL1表达后又可逆转miR-200c-3p mimics的化疗增敏作用。总之,miR-200-3p能够通过靶向FOSL1增加乳腺癌细胞对5-fluorouridine化疗敏感性。  相似文献   

6.
7.
Nasopharyngeal carcinoma (NPC) is a kind of head-neck malignant tumor derived from the nasopharyngeal epithelium and is mainly prevalent in Southern China and Southeast Asia countries. Cisplatin (DDP) provides the first-line therapeutic administration in NPC patients. However, chemoresistance has been a main barrier and caused bad treatment outcome in NPC therapy. To understand the molecular mechanism of acquired resistance to DDP, multiple methods were performed to examine the morphocytology and molecular changes in DDP-resistant NPC cells. We found that drug resistance cells displayed epithelial-mesenchymal transition (EMT) characteristics. DDP-resistant NPC cells exhibited enhanced migration and invasion potential. Moreover, overexpression of TAZ, one key gene in Hippo pathway, is closely associated with the DDP resistance of NPC cells and its EMT properties. Depletion of TAZ in DDP-resistant cells reversed EMT phenotypes to MET characteristics and restored chemosensitivity of DDP-resistant cells to DDP treatment. These results suggest that inactivation of TAZ could be a promising approach for the treatment of NPC patients.  相似文献   

8.
9.
Pyruvate dehydrogenase E1α (PDHA1) is the first component enzyme of the pyruvate dehydrogenase (PDH) complex that transforms pyruvate, via pyruvate decarboxylation, into acetyl-CoA that is subsequently used by both the citric acid cycle and oxidative phosphorylation to generate ATP. As such, PDH links glycolysis and oxidative phosphorylation in normal as well as cancer cells. Herein we report that SIRT3 interacts with PDHA1 and directs its enzymatic activity via changes in protein acetylation. SIRT3 deacetylates PDHA1 lysine 321 (K321), and a PDHA1 mutant mimicking a deacetylated lysine (PDHA1K321R) increases PDH activity, compared to the K321 acetylation mimic (PDHA1K321Q) or wild-type PDHA1. Finally, PDHA1K321Q exhibited a more transformed in vitro cellular phenotype compared to PDHA1K321R. These results suggest that the acetylation of PDHA1 provides another layer of enzymatic regulation, in addition to phosphorylation, involving a reversible acetyllysine, suggesting that the acetylome, as well as the kinome, links glycolysis to respiration.  相似文献   

10.
Wang  Qiong  Wang  Ling-Xiong  Zhang  Chun-Yan  Bai  Nan  Feng  Chen  Zhang  Zhuo-Mei  Wang  Liang  Gao  Zhen-Zhen 《Molecular and cellular biochemistry》2022,477(5):1477-1488

Ovarian cancer seriously threatens the health of women. LncRNA CRNDE is known to be upregulated in ovarian cancer. However, the mechanism by which CRNDE regulates the progress of ovarian cancer is largely unknown. MTT assay was applied to measure the cell viability. Colony formation assay was used to measure the cell proliferation. Cell migration was tested by wound healing, and Transwell assay was performed to detect cell invasion. In addition, the expression of miR-423-5p, CRNDE and FSCN1 were detected by RT-qPCR and western blotting, respectively. Meanwhile, dual-luciferase reporter assay and RIP assay were performed to explore the correlation between miR-423-5p and CRNDE (or FSCN1). CRNDE and FSCN1 were upregulated in ovarian cancer cells (SKOV3, CAOV-3, IGROV1, A2780 and C13K), while miR-423-5p was downregulated. Moreover, silencing of FSCN1/CRNDE significantly decreased proliferation, migration and invasion of ovarian cancer cells (SKOV3 and CI3K) via suppressing MMP-2 and MMP-9. In addition, CRNDE could sponge miR-423-5p, and FSCN1 was confirmed to be the direct target of miR-423-5p. Furthermore, CRNDE knockdown-induced inhibition of FSCN1 was notably reversed by miR-423-5p downregulation. Knockdown of CRNDE inhibited cell proliferation, migration and invasion of ovarian cancer via miR-423-5p/FSCN1 axis. Thus, CRNDE may serve a new target for ovarian cancer.

  相似文献   

11.
This study was aimed to verify whether there existed any associations between long noncoding RNA MEG3/miR-219a-5p/EGFR axis and the development of ovarian cancer (OC). As a whole, we gathered 317 pairs of OC tissues and surgical marginal normal tissues and simultaneously acquired four OC cell lines (ie, A2780, Caov-3, OVCAR-3, and SKOV-3) and human normal ovarian surface epithelial cell line. Moreover, pcDNA3.1-MEG3, si-MEG3, miR-219a-5p mimic, miR-219a-5p inhibitor, pcDNA3.1-EGFR, and si-EGFR were, respectively, transfected into the OC cells, and their impacts on viability, proliferation, apoptosis, invasion, and migration of OC cells were assessed via conduction of MTT assay, colony formation assay, flow cytometry assay, transwell assay, and scratch assay. Ultimately, dual-luciferase reporter gene assay was performed to testify the targeted relationships among maternally expressed gene 3 (MEG3), miR-219a-5p, and estimated glomerular filtration rate (EGFR). It was indicated that underexpressed MEG3 and miR-219a-5p were significantly associated with unfavorable prognosis of patients with OC when compared with overexpressed MEG3 and miR-219a-5p (P < .05). In addition, the OC cells transfected with si-MEG3 or miR-219a-5p inhibitor exhibited stronger viability, proliferation, invasion, and migration than untreated cells (P < .05). Correspondingly, the apoptotic percentage of OC cells was reduced observably under treatments of si-MEG3 and miR-219a-5p inhibitor (P < .05). Moreover, MEG3 exerted modulatory effects on the expression of miR-219a-5p (P < .05), and there was a sponging relationship between them (P < .05). Finally, EGFR expression was modified by both MEG3 and miR-219a-5p significantly (P < .05), and raising EGFR expression could changeover the impacts of MEG3 and miR-219a-5p on the above-mentioned activity of OC cells (P < .05). Conclusively, MEG3 could serve as a promising biomarker for diagnosis and treatment of OC, considering its involvement with OC etiology via regulation of miR-219a-5p/EGFR axis.  相似文献   

12.
13.
Cisplatin (DDP) resistance is a huge obstacle to gastric cancer (GC) treatment. Long non-coding RNAs (lncRNAs) have been manifested to exert pivotal functions in GC development. Herein, we aimed to explore the functional impact of lncRNA small nucleolar RNA host gene 6 (SNHG6) on DDP resistance and progression of GC. Quantitative real-time PCR (qRT-PCR) assay or Western blotting was performed to detect the expression of SNHG6, microRNA(miR)-1297, and epithelial–mesenchymal transition (EMT)-related factors and B-Cell Lymphoma 2 (Bcl-2) in DDP-resistant GC cells. Half inhibition concentration (IC50) to DDP, clonogenicity, apoptosis and invasion were examined via CCK-8 assay, colony formation assay, flow cytometry and Transwell assay, respectively. Target association between miR-1297 and SNHG6 or BCL-2 was demonstrated via dual-luciferase reporter assay or RIP assay. Xenograft models in nude mice were formed to investigate role of SNHG6 in vivo. We found that SNHG6 and BCL-2 were up-regulated, while miR-1297 expression was declined in GC tissues and DDP-resistant cells. Moreover, depletion of SNHG6 or gain of miR-1297 could repress DDP resistance, proliferation and metastasis of DDP-resistant cells, which was weakened by miR-1297 inhibition or BCL-2 overexpression. Besides, SNHG6 positively regulated BCL-2 expression by sponging miR-1297. Furthermore, SNHG6 knockdown repressed GC tumor growth in vivo. In a word, lncRNA SNHG6 knockdown had inhibitory effects on DDP resistance and progression of GC by sponging miR-1297, highlighting its potential in GC treatment.  相似文献   

14.
Breast cancer is one of the major malignancies threatening women's health worldwide, and chemotherapy tolerance has become a severe limitation of clinical treatment. Recent findings have revealed that resveratrol, as a dietary agent with antitumour activity, could prevent cancer progression by regulating microRNAs (miRNAs). Additionally, dysregulated miRNAs have been found to contribute significantly to chemoresistance by an increasing number of studies. In this study, experiments were designed to study the functional role of resveratrol in MCF-7 cells (low-invasive breast cancer) in chemosensitivity to adriamycin and to determine the targeted miRNAs of resveratrol and their key target proteins linked to cell activity. We demonstrated that in resveratrol-induced chemosensitivity, cell cycle and apoptosis were arrested in adriamycin-resistant breast cancer cells after modulation of the critical suppresser, miR-122-5p. Further miRNA modulation with miR-122-5p mimics or miR-122-5p inhibitors indicated a major effect of miR-122-5p on the regulation of key antiapoptotic proteins (B-cell lymphoma 2 [Bcl-2]) and cyclin-dependent kinases (CDK2, CDK4, and CDK6) in drug-resistant breast cancer cells in response to resveratrol. In conclusion, our results indicate that resveratrol acts as a potential inducer to enhance the chemosensitivity of breast cancer and also suggest that miR-122-5p is involved in the pathway of cell-cycle arrest by targeting Bcl-2 and CDKs.  相似文献   

15.
构建并鉴定miR-125b慢病毒过表达载体,研究miR-125b对卵巢癌细胞增殖和迁移的影响及其可能机制。将PcR扩增的rniR-125b前体序列与经过酶切后的GP—SupersilencingVector进行连接,产生miR-125b重组慢病毒表达载体。将重组慢病毒载体质粒、pGag/Pol、pRev和pVSV-G共转染293T细胞,包装产生慢病毒。使用收获的病毒颗粒感染卵巢癌SKOV3细胞,嘌呤霉素筛选稳定感染细胞株;实时荧光定量PCR(Real.timeqPCR)检测miR-125b在SKV03细胞中的表达;Westernblot检测其潜在靶基因HER-2的表达:MTT实验和Transwell侵袭实验分别观察miR-125b过表达后SKOV3细胞增殖和迁移能力的改变。该研究成功构建miR-125b陧病毒过表达载体,感染卵巢癌SKOV3细胞后,能够过表达miR-125b,并抑制SKOV3细胞的增殖及迁移,降低潜在靶基因HER-2的表达。该研究证叽miR-125b能够抑制SKOV3细胞的增殖及迁移,并可能通过降低潜在靶基因HER-2的表达而实现。  相似文献   

16.
Emerging studies have revealed the critical role of long non-coding RNAs (lncRNAs) in epithelial ovarian cancer (EOC) development and progression. Till now, the roles and potential mechanisms regarding FEZF1 antisense RNA 1 (FEZF1-AS1) within ovarian cancer (OC) remain unclear. The objective of this study was to uncover the biological function and the underlying mechanism of LncRNA FEZF1-AS1 in OC progression. FEZF1-AS1 expression levels were studied in cell lines and tissues of human ovarian cancer. In vitro studies were performed to evaluate the impact of FEZF1-AS1 knock-down on the proliferation, invasion, migration and apoptosis of OC cells. Interactions of FEZF1-AS1 and its target genes were identified by luciferase reporter assays. Our data showed overexpression of FEZF1-AS1 in OC cell lines and tissues. Cell migration, proliferation, invasion, wound healing and colony formation were suppressed by silencing of FEZF1-AS1. In contrast, cell apoptosis was promoted by FEZF1-AS1 knock-down in vitro. Furthermore, online bioinformatics analysis and tools suggested that FEZF1-AS1 directly bound to miR-130a-5p and suppressed its expression. Moreover, the inhibitory effects of miR-130a-5p on the OC cell growth were reversed by FEZF1-AS1 overexpression, which was associated with the increase in SOX4 expression. In conclusion, our results revealed that FEZF1-AS1 promoted the metastasis and proliferation of OC cells by targeting miR-130a-5p and its downstream SOX4 expression.  相似文献   

17.
Lung adenocarcinoma (LUAD) is usually found at the metastatic stage. Circular RNA dihydrouridine synthase 2-like (DUS2L) (circDUS2L) has been discovered to be upregulated in LUAD. Nevertheless, the function of circDUS2L in LUAD has not been verified. Levels of circDUS2L, microRNA-590-5p (miR-590-5p), and phosphoglycerate mutase 1 (PGAM1) mRNA were analyzed using quantitative real-time polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, metastasis, and invasion were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), colony formation, 5-ethynyl-2′-deoxyuridine (Edu), flow cytometry, and transwell assays. Protein levels were detected by western blotting. Cell glycolysis was analyzed by measuring cell glucose consumption, lactate production, and extracellular acidification rate (ECAR). The regulatory mechanism of circDUS2L in LUAD cells was analyzed by bioinformatics analysis, dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays. Xenograft assay was conducted to confirm the function of circDUS2L in vivo. CircDUS2L was highly expressed in LUAD tissues and cells. CircDUS2L silencing constrained xenograft tumor growth in vivo. CircDUS2L knockdown induced apoptosis, repressed viability, colony formation, proliferation, metastasis, invasion, and glycolysis of LUAD cells in vitro by releasing miR-590-5p via functioning as a miR-590-5p sponge. MiR-590-5p was lowly expressed in LUAD tissues and cells, and miR-590-5p mimic curbed malignant behaviors and glycolysis of LUAD cells by targeting PGAM1. PGAM1 was overexpressed in LUAD tissues and cells, and circDUS2L sponged miR-590-5p to regulate PGAM1 expression. CircDUS2L elevated PGAM1 expression through functioning as a miR-590-5p sponge, thus driving malignant behaviors and glycolysis of LUAD cells.  相似文献   

18.
目的:探讨瘦素对人卵巢癌SKOV3细胞增殖及凋亡的影响及其作用机制。方法:用不同浓度的瘦素(0、50、100、200 ng/m L)处理人卵巢癌SKOV3细胞48 h后,采用MTT法检细胞的生长;以血清饥饿诱导细胞凋亡,同时给予瘦素刺激,Annexin V/PI双染法检测细胞凋亡的变化;western blotting分析p21、cyclin D1、Bcl-2、Bax蛋白的表达水平和ERK1/2通路的活化情况。结果:瘦素以剂量依赖性的方式促进人卵巢癌SKOV3细胞的增殖,同时抑制血清饥饿诱导的细胞凋亡。瘦素处理可下调p21和上调cyclin D1的表达,抑制促凋亡分子Bax的表达和上调抗凋亡分子Bcl-2的表达。瘦素可诱导细胞中ERK1/2通路的活化,其抑制剂PD98059可明显抑制瘦素诱导的促细胞增殖和抗凋亡作用,同时伴随有cyclin D1、Bcl-2蛋白表达的下调和Bax的上调。结论:瘦素可能通过活化ERK1/2通路调节细胞有丝分裂进程,进而促进卵巢癌细胞的增殖;同时通过调节凋亡相关蛋白Bcl-2和Bax的表达抑制卵巢癌细胞的凋亡。  相似文献   

19.
《Reproductive biology》2022,22(4):100702
Circular RNA (circRNA) have been shown to exert vital functions in the pathological progressions of ovarian cancer (OC). Herein, this study aimed to investigate the role and mechanisms of circ_0015756 in OC progression. Levels of circ_0015756, microRNA (miR)? 145–5p and phosphoserine aminotransferase 1 (PSAT1) were detected using quantitative real-time polymerase chain reaction, Western blot or immunohistochemistry assays. Cell proliferation, apoptosis, migration and invasion were determined using cell counting kit-8, 5-Ethynyl-2′-Deoxyuridine (Edu) incorporation, flow cytometry, transwell and Western blot assays. The binding interaction between miR-145–5p and circ_0015756 or PSAT1 was confirmed by bioinformatics prediction and dual-luciferase reporter assay. Tumor formation assay in nude mice was performed to determine the tumor growth in vivo. Circ_0015756 was highly expressed in OC tissues and cells. Knockdown of circ_0015756 suppressed cancer cell growth, migration and invasion in vitro, as well as impeded tumor growth in vivo. In a mechanical study, circ_0015756 directly bound to miR-145–5p, and inhibition of miR-145–5p reversed the effects of circ_0015756 knockdown on OC cells. Moreover, miR-145–5p directly targeted PSAT1, and miR-145–5p weakened OC cell growth, migration and invasion via targeting PSAT1. Importantly, further studies confirmed that circ_0015756 could indirectly regulate PSAT1 expression via sponging miR-145–5p. In all, circ_0015756 accelerated OC tumorigenesis through regulating miR-145–5p/PSAT1 axis, providing a new therapeutic target for OC.  相似文献   

20.
《Genomics》2022,114(2):110294
Circular RNA (circRNA) plays vital roles in diverse cancer progression, including non-small cell lung cancer (NSCLC). Herein, the role of circ_0004015 in regulating the sensitivity of NSCLC to cisplatin (DDP) is revealed. The RNA expression of circ_0004015, microRNA-198 (miR-198) and kruppel like factor 8 (KLF8) was detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blot. The half maximal inhibitory concentration of DDP and cell proliferation were determined by cell counting kit-8 assay. Cell colony formation ability, migration, invasion and apoptosis were investigated by colony-forming assay, transwell assay and flow cytometry analysis, respectively. The effect of circ_0004015 knockdown on DDP sensitivity in vivo was demonstrated by mouse model assay. The interactions among circ_0004015, miR-198 and KLF8 were predicted by bioinformatics methods, and identified by mechanism assays. The expression of circ_0004015 and KLF8 was apparently upregulated, while miR-198 expression was downregulated in DDP-resistant NSCLC tissues and cells compared with control groups. Additionally, circ_0004015 silencing repressed DDP resistance, cell proliferation, migration and invasion, but induced cell apoptosis in DDP-resistant NSCLC cells. Circ_0004015 knockdown promoted the effect of DDP on tumor formation in vivo. Also, miR-198 inhibitors attenuated circ_0004015 depletion-mediated action though associating with circ_0004015. MiR-198 regulated DDP sensitivity and NSCLC progression by targeting KLF8. Furthermore, circ_0004015 modulated KLF8 expression through interaction with miR-198. Circ_0004015 conferred DDP resistance and promoted NSCLC progression by miR-198/KLF8 pathway, proving a potential target for studying DDP-mediated treatment of NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号