首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cationic diphenylphosphido-bridged compound [Ru2(μ-PPh2)(μ-OH)26-p-cymene)2][PF6) (2) has been prepared by reaction of the tri-μ-hydroxo complex [Ru2(μ-OH)3(η-p-cymene)2][PF6] (1) with diphenylphosphine. Complex 2 eliminates water on reaction with protic acids, incorporating the conjugate base of the added acid as a bridging ligand. Formic acid, acetic acid, phenol, and aniline react with 2 to give the monosubstituted compounds [Ru2(μ-PPh2)(μ-OH)(μ-L)(η6-p-cymene)2]PF6] (L = HCO2, MeCO2, OPh, or NHPH), whereas methanol, thiophenol, 1,2-benzenedithiol, hydrochloric acid and isopropanol afford the disubstituted derivatives [Ru2(μ-PPh2)(μ-L)26-p-cymene)2]PF6] (L = OMe, SPh, S2C6H4, Cl, or H).  相似文献   

2.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

3.
The reaction between Ru3(CO)12 and a cyclic olefin (cis-cyclooctene or trans-cyclododecene) at 100 °C for several hours gives the title compounds (μ-H)2RU3(CO)932-C8H12) (1), and (μ-H)RU3(CO)933-C12H19) (2), both of which have been characterized by X-ray diffraction studies, IR and NMR spectral measurements and elemental analysis. The prolonged reaction between Ru3(CO)12 and cis-cyclooctene gives compound HRu3(CO)9(C8H11) (3). Compound 3 has been characterized with IR and NMR spectral analyses. In 1 the cyclooctene ring is linked via a μ32-alkyne type of bonding to the face of the Ru3 cluster. It is formally σ-bonded to two of the three Ru atoms and π-bonded to the third Ru. The two hydrides in 1 are bridging Ru---Ru bonds. In 2 the cyclododecene ring is bonded to the Ru3 face via the μ33-CCHC linkage. There are two formal σ-bonds from the allyl part to the hydrido-bridged Ru atoms and the η3-allyl linkage to the third Ru atom.  相似文献   

4.
Reactions of FcCCH (a), HCCCCFc (b) and FcCCCCFc (c) with Ru3(CO)10(NCMe)2 (all) and Ru3(μ-dppm)(CO)10 (b and c only) are described. Among the products, the complexes Ru33-RC2R′)(μ-CO)(CO)9 (R=H, R′=Fc 1, CCFc 2; R=R′=Fc 5), Ru3(μ-H)(μ3-C2CCFc)(μ-dppm)(CO)7 3, Ru33-FcC2CCFc)(μ-dppm)(μ-CO)(CO)7 6 and Ru33-C4Fc2(CCFc)2}(μ-dppm)(μ-CO)(CO)5 7 were characterised, including single-crystal structure determinations for 1, 3, 5 and 7; that of 7 did not differ significantly from an earlier study of a mixed CH2Cl2–C6H6 solvate.  相似文献   

5.
The coordinatively unsaturated cluster [Pt33-CO)(μ-dppm)3]2+ (1, dppm = Ph2PCH2PPh2) reacts with Na+[M(CO)5] to give the mixed metal clusters [Pt3{M(CO)3}(μ-dppm)3]+ (M = Re, 2; Mn, 3). The new clusters are characterized by spectroscopic methods and, for M = Re, by an X-ray structure determination. The Pt3Re core in 2 is tetrahedral with particularly short metal-metal distances.  相似文献   

6.
Novel isonitrile derivatives of a diruthenium carbonyl complex, (μ235-guaiazulene)Ru2(CO)5 (2), were synthesized by substitution of a CO ligand by an isonitrile, and were subjected to studies on thermal and photochemical haptotropic interconversion. Treatment of 2 (a 45:55 mixture of two haptotropic isomers, 2-A and 2-B) with RNC at room temperature resulted in coordination of RNC and alternation of the coordination mode of the guaiazulene ligand to form (μ215-guaiazulene)Ru2(CO)5(CNR), 5d–5f, [5d; R=tBu, 5e; 2,4,6-Me3C6H2, or 5f; 2,6-iPr2C6H3] in moderate to good yields. Thermal dissociation of a CO ligand from 5 at 60 °C resulted in quantitative formation of a desirable isonitrile analogue of 2, (μ235-guaiazulene)Ru2(CO)4(CNR), 4d–4f, [4d; R=tBu, 4e; 2,4,6-Me3C6H2, or 4f; 2,6-iPr2C6H3], as a 1:1 mixture of the two haptotropic isomers. A direct synthetic route from 2 to 4d–4f was alternatively discovered; treatment of 2 with one equivalent of RNC at 60 °C gave 4d–4f in moderate yields. All of the new compounds were characterized by spectroscopy, and structures of 5d (R=tBu) and 4d-A (R=tBu) were determined by crystallography. Thermal and photochemical interconversion between the two haptotropic isomers of 4d–4f revealed that the isomer ratios in the thermal equilibrium and in the photostatic state were in the range of 48:52–54:46.  相似文献   

7.
The singlet-triplet separations for the edge-sharing bioctahedral (ESBO) complex W2(μ-H)(μ-Cl)(Cl4(μ-dppm)2 · (THF)3 (II) has been studied by 31P NMR spectroscopy. The structural characterization of [W2(μ-H)2(μ-O2CC6H5)2Cl2(P(C6H5)3)2] (I) by single-crystal X-ray crystallography has allowed the comparison of the energy of the HOMOLUMO separation determined using the Fenske-Hall method for a series of ESBO complexes with two hydride bridging atoms, two chloride bridging atoms and the mixed case with a chloride and hydride bridging atom. The complex representing the mixed case, [W2(μ-H)(μ-Cl)Cl4(μ-dppm)2 · (THF)3] (II), has been synthesized and the value of −2J determined from variable-temperature 31P NMR spectroscopy.  相似文献   

8.
Reaction of the activated mixture of Re2(CO)10, Me3NO and MeOH with a 1:1 mixture of rac (d/l)- and meso-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane (hptpd) yields a mixture of (d/l)- and meso-[{Re2(μ-OMe)2(CO)6}2(μ,μ′-hptpd)] 1. The diastereomers can be easily separated by selective dissolution of d/l-1 in benzene, and give clearly distinguishable 1H- and 31P-NMR spectra. The fluxional behavior of d/l-1 in solution has been studied by variable-temperature 1H- and 31P-{1H}-NMR spectroscopy. The crystal structures of both d/l- and meso-1 have been determined. Both molecules consist of two {Re2(μ-OMe)2(CO)6} moieties which are bridged by the two P---CH2---CH2---P moieties of the hptpd ligand. Whilst the molecules of meso-1 possess crystallographic i-symmetry, those of d/l-1 do not have any crystallographic symmetry. These diastereomers therefore give clearly distinguishable Raman spectra in the solid state. Reaction of tris[2-(diphenylphosphino)ethyl]phosphine (tdppep) with the activated mixture affords the complex [{Re2(μ-OMe)2(CO)6}(μ,η2-tdppep)] 2, and the analogous reaction involving bis[2-diphenylphospinoethyl)phenylphosphine (triphos) gives [{Re2(μ-OMe)2(CO)6}(μ,μ′,η3-triphos){Re2(CO)9}] 3 and [{Re2(μ-OMe)2(CO)6}(μ,η2-triphos)] 4.  相似文献   

9.
[W3Se7(S2P(OEt)2)3]Br was prepared by reacting (Et4N)2W3Se7Br6 with KS2P (OEt)2 in CH3CN and its crystal structure determined. In the [W33-Se)(μ2-Se2)3]4+ core the W---W bond length is 2.755(5)-2.764(6) Å and the Se---Se bond length is 2.32(1)- 2.34(4) Å.  相似文献   

10.
Peter C. Junk  Jonathan W. Steed   《Polyhedron》1999,18(27):4646-3597
[Co(η2-CO3)(NH3)4](NO3)·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O were prepared by prolonged aerial oxidation of a solution of Co(NO3)2·6H2O and ammonium carbonate in aqueous ammonia. The formation of these side products highlights the richness of the chemistry of these systems and the possibility of by products if methods are not strictly adhered to. The X-ray crystal structures of [Co(η2-CO3)(NH3)4][NO3]·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O reveal a monomeric octahedral cobalt center with η2-bound CO32− in the former, while the latter consists of a dimeric array where the two cobalt centers are bridged by two OH and one μ2-CO32− groups with three terminal NH3 ligands for each Co center. In both complexes extensive hydrogen bonding interactions are evident.  相似文献   

11.
The vanadium(V) peroxo phosphato complex K7[V4O4(O2)8(PO4)]·9H2O has been obtained from the KVO3---KH2PO4---KOH---H2O2---H2O---C2H5OH system. The X-ray structural analysis revealed a tetranuclear anionic structure in which two dinuclear [V2O2(O)2)2(μ-η1 : η2-O2)2] units are connected by the μ4-PO4 group.  相似文献   

12.
The reaction of the anionic mononuclear rhodium complex [Rh(C6F5)3Cl(Hpz)]t- (Hpz = pyrazole, C3H4N2) with methoxo or acetylacetonate complexes of Rh or Ir led to the heterodinuclear anionic compounds [(C6F5)3Rh(μ-Cl)(μ-pz)M(L2)] [M = Rh, L2 = cyclo-octa-1,5-diene, COD (1), tetrafluorobenzobarrelene, TFB (2) or (CO)2 (4); M = Ir, L2 = COD (3)]. The complex [Rh(C6F5)3(Hbim)] (5) has been prepared by treating [Rh(C6F5)3(acac)] with H2bim (acac = acetylacetonate; H2bim = 2,2′-biimidazole). Complex 5 also reacts with Rh or Ir methoxo, or with Pd acetylacetonate, complexes affording the heterodinuclear complexes [(C6F5)3Rh(μ-bim)M(L2)] [M = Rh, L2 = COD (6) or TFB (7); M = Ir, L2 = COD (8); M = Pd, L2 = η3-C3H5 (9)]. With [Rh(acac)(CO)2], complex 5 yields the tetranuclear complex [{(C6F5)3Rh(μ-bim)Rh(CO)2}2]2−. Homodinuclear RhIII derivatives [{Rh(C6F5)3}2(μ-L)2]·- [L2 = OH, pz (11); OH, StBu (12); OH, SPh (13); bim (14)] have been obtained by substitution of one or both hydroxo groups of the dianion [{Rh(C6F5)3(μ-OH)}2]2− by the corresponding ligands. The reaction of [Rh(C6F5)3(Et2O)x] with [PdX2(COD)] produces neutral heterodinuclear compounds [(C6F5)3Rh(μ-X)2Pd(COD)] [X = Cl (15); Br (16)]. The anionic complexes 1–14 have been isolated as the benzyltriphenylphosphonium (PBzPh3+) salts.  相似文献   

13.
14.
Treatment of [Ru2(CO)4(MeCN)6][BF4]2 or [Ru2(CO)4(μ-O2CMe)2(MeCN)2] with uni-negative 1,1-dithiolate anions via potassium dimethyldithiocarbamate, sodium diethyldithiocarbamate, potassium tert-butylthioxanthate, and ammonium O,O′-diethylthiophosphate gives both monomeric and dimeric products of cis-[Ru(CO)22-(SS))2] ((SS)=Me2NCS2 (1), Et2NCS2 (2), tBuSCS2 (3), (EtO)2PS2 (4)) and [Ru(CO)(η2-(Me2NCS2))(μ,η2-Me2NCS2)]2 (5). The lightly stabilized MeCN ligands of [Ru2(CO)4(MeCN)6][BF4]2 are replaced more readily than the bound acetate ligands of [Ru2(CO)4(μ-O2CMe)2(MeCN)2] by thiolates to produce cis-[Ru(CO)22-(SS))2] with less selectivity. Structures 1 and 5 were determined by X-ray crystallography. Although the two chelating dithiolates are cis to each other in 1, the dithiolates are trans to each other in each of the {Ru(CO)(η2-Me2NCS2)2} fragment of 5. The dimeric product 5 can be prepared alternatively from the decarbonylation reaction of 1 with a suitable amount of Me3NO in MeCN. However, the dimer [Ru(CO)(η2-Et2NCS2)(μ,η2-Et2NCS2)]2 (6), prepared from the reaction of 2 with Me3NO, has a structure different from 5. The spectral data of 6 probably indicate that the two chelating dithiolates are cis to each other in one {Ru(CO)(η2-Et2NCS2)2}fragment but trans in the other. Both 5 and 6 react readily at ambient temperature with benzyl isocyanide to yield cis-[Ru(CO)(CNCH2Ph)(η2-(SS))2] ((SS)=Me2NCS2 (7) and Et2NCS2 (8)). A dimerization pathway for cis-[Ru(CO)22-(SS))2] via decabonylation and isomerization is proposed.  相似文献   

15.
Three tetranuclear clusters [Ru4H4(CO)11(PPh3)] (1), [Ru4H2(CO)12(PPh3)] (2) and [Ru3IrH(CO)12(PPh3)] (3) were formed in the reaction of [Ir(CO)Cl(PPh3)2] and Na[Ru3H(CO)11] in tetrahydrofuran. Complexes 1–3 were characterized by IR and 1H and 31P NMR, and the structure of the clusters was confirmed by single crystal X-ray analysis. In 2 and 3 one of the carbonyls bridges between two ruthenium atoms; otherwise the compounds contain only terminal carbonyls.  相似文献   

16.
The 60-electron tetrahedral clusters W2Ir2(μ-L)(CO)85-C5H4Me)2 [L=dppe (2), dppf (3)] have been prepared from reaction between W2Ir2(CO)105-C5H4Me)2 (1) and the corresponding diphosphine in 52 and 66% yields, respectively. A structural study of 2 reveals that three edges of a WIr2 face are spanned by bridging carbonyls, that the iridium-ligated diphosphine coordinates diaxially and that the tungsten-bound methylcyclopentadienyls coordinate axially and apically with respect to the plane of bridging carbonyls. A structural study of 3 reveals that the dppf ligand bridges an Ir---Ir bond which is also spanned by a bridging carbonyl; tungsten-ligated methylcyclopentadienyl ligands and terminal carbonyls result in electronic asymmetry (17e and 19e iridium atoms) in the electron-precise cluster. Both clusters show two reversible one-electron oxidation processes and an irreversible two-electron reduction; the dppf-containing cluster 3 has a further, irreversible, one-electron oxidation process. UV–vis-NIR spectroelectrochemical studies of the 2→2+→22+ progression reveal the appearance of a low-energy transition on oxidation to 2+ which persists on further oxidation to 22+.  相似文献   

17.
The composition of (C6Me6)TiAl2Cl8−xEtx complexes in (C6Me6)TiAl2Cl8 + n Et3Al (n = 0.5-6) systems was studied by UV-Vis spectroscopy and the X-ray crystal structure of one of them, (η6-C6Me6)Ti[(μ-Cl)2(AlClEt)]2 (IIa-2), has been determined. The complex crystallizes in the orthorhombic space group Pna21 with Z = 4 and lattice parameters a 15.634(3), b 11.355(2), c 14.417(2) Å. The ethyl groups of IIa-2 reside in outer positions of aluminate ligands farther away from the C6Me6 ligand. The other part of the complex does not differ remarkably from structures of other (arene)TiII complexes. Negligible activity of (C6Me6)TiAl2Cl8 towards the butadiene cyclotrimerization is considerably increased by addition of 2.5–3.0 equivalents of Et3Al. As follows from UV-Vis spectra, such systems contain mainly the (C6Me6)TiAl2Cl5Et3 complex. It is suggested that the introduction of three Et substituents destabilizes the Ti-(η6-C6Me6) bond so that the replacement of hexamethylbenzene by butadiene in the first step of a catalytic cycle becomes more feasible.  相似文献   

18.
The title complex Mn2(CO)6(μ-H){μ-S(SC3H5)C=C(PPr3i)S} was synthesized by allyation of the homobinuclear anion [Mn2(CO)6(μ-H){μ-S(SC3H5)C=C(PPr3i)S}]−1, and characterized by elemental analysis, IR, 1H NMR and 31P NMR spectra. The molecular structure shows that it contains a novel fairly planar ligand S(S)C=C(PPr3i)S, and the two Mn(CO)3 fragments are symmetrically placed at both sides of the plane of the ligand.  相似文献   

19.
The methylene-bridged, mixed-chalogen compounds Fe2(CO)6(μ-SeCH2Te) (1) and Fe2(CO)6(μ-SCH2Te) (3) have been synthesised from the room temperature reaction of diazomethane with Fe2(CO)6(μ-SeTe) and Fe2(CO)6(μ-STe), respectively. Compounds 1 and 3 have been characterised by IR, 1H, 13C, 77Se and 125Te NMR spectroscopy. The structure of 1 has been elucidated by X-ray crystallography. The crystalsare monoclinic,space group P21/n, A = 6.695(2), B = 13.993(5), C = 14.007(4)Å, β = 103.03(2)°, V = 1278(7) Å3, Z = 4, Dc = 2.599 g cm−3 and R = 0.030 (Rw = 0.047).  相似文献   

20.
The reaction of [(CO)PPh3)2Re(μ-H)2(μ-NCHPh)Ru(PPh3)2(PhCN)] (2) with HBF4-Me2O generates [(CO)PPh3)2Re(μ- H)2(μ,η12HNCHPh)Ru(PPh3)2(PhCN)][BF4] (3). Monitoring the reaction by NMR spectroscopy shows the intermediate formation of [(CO)(PPh3)2 HRe(μ-H)2(μ-NCHPh)Ru(PPh3)2(PhCN)][BF4] (4). Attempted reduction of the imine ligand by a nucleophile (H or CN) failed, regenerating 2. Under dihydrogen at 50 atm, 3 is slowly transformed into [(CO)(PPh3)2HRe(μ-H)3Ru(PPh3)2(PhCN)][BF4] (5) with liberation of benzyl amine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号