共查询到20条相似文献,搜索用时 25 毫秒
1.
Ellen Pape Agnes Muthumbi Chomba Peter Kamanu Ann Vanreusel 《Estuarine, Coastal and Shelf Science》2008,76(4):797-808
The gastropod Terebralia palustris often dominates the surface of muddy to sandy substrates of intertidal mudflats and mangrove forests, where they clearly destabilize the sediment. In the present study, it was investigated whether and to what extent the behaviour of juvenile and adult snails differs among habitats (mudflat vs. mangrove stand) in a Sonneratia alba mangal at Gazi Bay, Kenya. For this purpose we: (1) examined their distribution along three land–sea transects; and (2) applied stable isotope analysis to determine the feeding patterns of different-sized snails from the mangrove and mudflat habitats. Additionally, we investigated if these gastropods exert an impact on microphytobenthic (diatom) biomass, and whether this is size-dependent. The latter objective was met by either enclosing or excluding different-sized snails from experimental cages on the intertidal mudflat and the subsequent assessment of a change in pigment concentration of the sediment surface. In agreement with several previous studies conducted in other mangroves and geographical locations, a spatial segregation was demonstrated between juveniles (more common on the mudflat) and adults (more common in the mangrove forest). On the intertidal mudflat juveniles avoided sediment patches characterized by highly saline water in intertidal pools and a high mud content, while adults tended to dwell on substrates covered by a high amount of leaf litter. Stable carbon isotope analysis of the foot tissue of snails sampled from the S. alba stand and the mudflat indicated a transition in food source when a shell length of 51 mm is reached. Considering the δ13C value of juveniles, it seems they might be selecting for microphytobenthos, which might explain their preference for the mudflat. The diet of size classes found in both habitats did not differ significantly, although juveniles inhabiting the mangrove forest were slightly more depleted in 13C compared to those residing on the mudflat. Assuming juveniles feed on benthic microalgae and considering the lower microalgal biomass inside the mangrove forest, this may be a consequence of a higher contribution of other, more 13C depleted organic carbon sources, like phytoplankton, to their diet. Experimental results indicate a negative, but insignificant, impact on benthic diatom biomass by juveniles (due to grazing) and adults (due to physical disturbance). This finding seems to be in agreement with the results of the stable carbon isotope analysis, strongly suggesting the selective feeding of juvenile T. palustris on benthic diatoms. 相似文献
2.
3.
This study examined the phenology and ecological consequences of a benthic filamentous cyanobacterial bloom (Lyngbya majuscula) in Deception Bay (Moreton Bay, Queensland, Australia). Bloom initiation occurred in mid December 1999 and expanded to encompass an 8 km2 area by April 2000. Small fish and penaeid prawns (<25 cm total length) were quantitatively sampled through periods designated as before, during and after the bloom using a combination of pop-netting within mangroves and beam trawling over adjacent seagrass beds. Data on larger-bodied fish were compiled from daily fishing logs provided by local commercial fishers. Changes in dry mass of bloom material caught in nets and changes in water chemistry were also measured. Mean concentrations of ammonia-N in residual water within mangroves were several orders of magnitude higher in the affected area than in the control and dissolved oxygen was markedly lower in affected areas. Across the study area, mean density, live mass and number of species declined during the bloom, with fish assemblages using mangroves showing greater decline than assemblages using seagrasses. Response at the species level was highly variable; generally, epibenthic species showed a more sustained decline than demersals. Mean monthly fish catch was significantly lower in bloom than non-bloom years. This study has also demonstrated that throughout the bloom, the affected area continued to support a highly diverse and abundant fish and prawn assemblage, and probably maintained its function as an important nursery habitat for many species. 相似文献
4.
Brendan J. Hicks 《新西兰海洋与淡水研究杂志》2013,47(5):651-664
Abstract Stable isotopes of carbon (C) and nitrogen (N) were studied in 11 stream communities in the Waikato region of New Zealand. From comparisons of mean δ13C and δ15N values, food webs in the shaded, forest streams were clearly based on allochthonous material (conditioned leaf litter and terrestrial invertebrates). Autotrophs in forest streams were not a significant C source for the food webs. However, the C source of food webs in the unshaded pasture streams appeared to be a mixture of allochthonous and autochthonous material. Conditioned leaf litter appeared to contribute to the pasture stream food webs, and the δ13C and δ15N of some samples of epilithic diatoms indicated their consumption by invertebrates in pasture streams. Fish ate a wide range of aquatic invertebrates; longfinned eels (Anguilla dieffenbachii) and banded kokopu (Galaxias fasciatus) also had a large proportion of terrestrial invertebrates in their diet. Filamentous green algae were found only at pasture sites, where they were sometimes abundant. The wide range of δ13C values of filamentous green algae (‐18.8 to ‐29.7‰) complicated understanding of their role in the stream food webs. The δ13C values of Cladophora were related to water velocity, with more 13C‐enriched values in pools than in runs (‐23.2‰ in pools, mean velocity 0.12 m s?1; ‐28.1‰ in runs, mean velocity 0.24 m s?1). Crayfish and the gastropod mollusc Potamopyrgus appeared to be the only invertebrates to eat filamentous green algae. 相似文献
5.
The benthic macroinvertebrates of the Nakdong River estuary were sampled at three different habitats: two salt marsh (Scirpus triqueter and Phragmites australis) beds and a bare intertidal flat. Fishes were sampled in the main channel. The trophic importance of marsh vascular plants, microphytobenthos, and riverine and channel particulate organic matter to macroinvertebrate and fish production was studied using stable carbon and nitrogen isotope tracers. There was a dramatic change in coverage of macrophytes (salt marshes and seagrass) after the construction of an estuarine barrage in 1987 in the Nakdong River estuary, with the S. triqueter bed increasing, the P. australis bed decreasing, and Zostera marina habitats being nearly lost. Although the invertebrate δ13C were within a narrower range than those of the primary producers, the values varied considerably among consumers in these habitats. However, the isotope signatures of consumers showed similarities among different habitats. Cluster analysis based on their isotopic similarity suggested that the isotope variability among species was related more to functional feeding groups than to habitats or taxonomic groups. While δ13C values of suspension feeders were close to that of the channel POM (mainly phytoplankton), other benthic feeders and predators had δ13C similar to that of microphytobenthos. Isotopic mixing model estimates suggest that algal sources, including microphytobenthos and phytoplankton, play an important role in supporting the benthic food web. Despite the huge productivity of emergent salt marshes, the contribution of the marsh-derived organic matter to the estuarine food webs appears to be limited to some nutrition for some invertebrates just within marsh habitats, with little on the bare intertidal flats or in the channel fish communities. Isotope signatures of the channel fishes also confirm that algal sources are important in supporting fish nutrition. Our findings suggest that benthic and pelagic microalgae made a large contribution to consumer diets, while marsh plants may not have a large role in supporting food webs in this estuarine system. 相似文献
6.
Stable isotope analysis was used to investigate nekton movements and feeding location in a coastal area adjacent to a major European river, the Tagus, Portugal. Particulate organic matter isotopic signatures presented a gradient from the river towards the sea. Phytoplankton, zooplankton, polychaetes and the crab, Polybius henslowii, provided evidence of the incorporation of terrestrial organic matter into the lower levels of the food web, reflecting local isotopic signatures. Two fish species reflected the coastal isotopic gradient in δ13C, Diplodus vulgaris and Arnoglossus imperialis and the latter also presented isotopic differerences among the sites for δ15N. Alloteuthis subulata, Trisopterus luscus and Callionymus lyra were isotopicaly distinct among sites for δ15N. An increase of δ15N with length was detected for T. luscus and C. lyra, possibly showing ontogenic trophic level changes. Since A. subulata did not present differences in length and still showed isotopic distinction for δ15N, among areas, it was concluded that local biogeochemical factors may also have an influence. Diplodus bellottii and Dicologlossa cuneata did not reflect any isotopic signature reflecting their wide migration and feeding across the coastal area. Central isotopic ranges, defined as the site mean values for δ13C and δ15N ± 1‰ were determined for each species and site and those deviating from these were considered transient individuals. Central isotopic ranges accounted for 87% of A. imperialis, 80% of A. subulata, 77% of T. luscus, 67% of C. lyra and 50% of D. vulgaris. The number of individuals within each central isotopic range was surprisingly high for an open coastal area and comparable to those of more structured environments. 相似文献
7.
Clayton J. Williams Rudolf Jaffé William T. Anderson Frank J. Jochem 《Estuarine, Coastal and Shelf Science》2009
A stable carbon isotope approach was taken to identify potential organic matter sources incorporated into biomass by the heterotrophic bacterial community of Florida Bay, a subtropical estuary with a recent history of seagrass loss and phytoplankton blooms. To gain a more complete understanding of bacterial carbon cycling in seagrass estuaries, this study focused on the importance of seagrass-derived organic matter to pelagic, seagrass epiphytic, and sediment surface bacteria. Particulate organic matter (POM), seagrass epiphytic, seagrass (Thalassia testudinum) leaf, and sediment surface samples were collected from four Florida Bay locations with historically different organic matter inputs, macrophyte densities, and primary productivities. Bulk (observed and those reported previously) and compound-specific bacterial fatty acid δ13C values were used to determine important carbon sources to the estuary and benthic and pelagic heterotrophic bacteria. The δ13C values of T. testudinum green leaves with epiphytes removed ranged from −9.9 to −6.9‰. Thalassia testudinum δ13C values were significant more enriched in 13C than POM, epiphytic, and sediment samples, which ranged from −16.4 to −13.5, −16.2 to −9.6, and −16.7 to −11.0‰, respectively. Bacterial fatty acid δ13C values (measured for br14:0, 15:0, i15:0, a15:0, br17:0, and 17:0) ranged from −25.5 to −8.2‰. Assuming a −3‰ carbon source fractionation from fatty acid to whole bacteria, pelagic, epiphytic, and sediment bacterial δ13C values were generally more depleted in 13C than T. testudinum δ13C values, more enriched in 13C than reported δ13C values for mangroves, and similar to reported δ13C values for algae. IsoSource mixing model results indicated that organic matter derived from T. testudinum was incorporated by both benthic and pelagic bacterial communities, where 13–67% of bacterial δ13C values could arise from consumption of seagrass-derived organic matter. The IsoSource model, however, failed to discriminate clearly the fraction of algal (0–86%) and mangrove (0–42%) organic matter incorporated by bacterial communities. These results indicate that pelagic, epiphytic, and sediment surface bacteria consumed organic matter from a variety of sources. Bacterial communities incorporated consistently seagrass-derived organic matter, the dominant macrophyte in Florida Bay, but seagrass δ13C values alone could not account fully for bacterial δ13C values. 相似文献
8.
Corine Glé Yolanda Del Amo Benoît Sautour Pierre Laborde Pierre Chardy 《Estuarine, Coastal and Shelf Science》2008
Seasonal and spatial variations of phytoplankton primary production were studied using a high frequency sampling strategy in the external (ENW) and internal (INW) part of Arcachon Bay, during 2002 and 2003. In order to better assess the availability of nutrients and their relationship with phytoplankton primary production, nutrient variability was studied in relation to environmental conditions and phytoplankton production. During winter, when primary production rates were the lowest, nutrient concentrations were maximal but did not show excessive levels compared to highly urbanised areas. Seasonal and spatial variations of nutrient concentrations (especially DIN-nitrate + nitrite + ammonium- and Si) were largely influenced by Leyre River loads coupled with high tidal exchange with the Atlantic Ocean creating a nutrient gradient between the INW and ENW. By February, diatom growth leads to an early severe nutrient depletion in the entire bay. Examination of nutrient ratios showed that the potential limiting nutrient during spring was P in 2003, and Si in 2002. During summer 2003, N and Si concentrations reached their lowest values, and nutrient ratios revealed a N-deficient environment, more pronounced in the INW. The high Si:N ratios during this period might be explained by (1) important N-uptake by all autotroph communities and (2) benthic-pelagic coupling with high Si regeneration. This study shows that nutrient levels in Arcachon Bay seem to play an important role in the control of phytoplankton primary production rates during the productive period and explain their spatial, seasonal and inter-annual variability. Our estimates of annual integrated phytoplankton primary production (103 g C m−2 y−1) place this bay within the low to moderate phytoplankton primary production systems. 相似文献
9.
Gil Penha-Lopes Steven Bouillon Perrine Mangion Adriano Macia Jos Paula 《Estuarine, Coastal and Shelf Science》2009,84(3):318-325
Population structure and distribution of Terebralia palustris were compared with the environmental parameters within microhabitats in a monospecific stand of Avicennia marina in southern Mozambique. Stable carbon and nitrogen isotope analyses of T. palustris and potential food sources (leaves, pneumatophore epiphytes, and surface sediments) were examined to establish the feeding preferences of T. palustris. Stable isotope signatures of individuals of different size classes and from different microhabitats were compared with local food sources. Samples of surface sediments 2.5–10 m apart showed some variation (−21.2‰ to −23.0‰) in δ13C, probably due to different contributions from seagrasses, microalgae and mangrove leaves, while δ15N values varied between 8.7‰ and 15.8‰, indicating that there is a very high variability within a small-scale microcosm. Stable isotope signatures differed significantly between the T. palustris size classes and between individuals of the same size class, collected in different microhabitats. Results also suggested that smaller individuals feed on sediment, selecting mainly benthic microalgae, while larger individuals feed on sediment, epiphytes and mangrove leaves. Correlations were found between environmental parameters and gastropod population structure and distribution vs. the feeding preferences of individuals of different size classes and in different microhabitats. While organic content and the abundance of leaves were parameters that correlated best with the total density of gastropods (>85%), the abundance of pneumatophores and leaves, as well as grain size, correlated better with the gastropod size distribution (>65%). Young individuals (height < 3 cm) occur predominantly in microhabitats characterized by a low density of leaf litter and pneumatophores, reduced organic matter and larger grain size, these being characteristic of lower intertidal open areas that favour benthic microalgal growth. With increasing shell height, T. palustris individuals start occupying microhabitats nearer the mangrove trees characterized by large densities of pneumatophores and litter, as well as sediments of smaller grain size, leading to higher organic matter availability in the sediment. 相似文献
10.
Carbon and nitrogen stable isotope ratios (13C and 15N) and trophic level (TL) estimates based on stomach content analysis and published data were used to assess the contribution of autotrophic sources to 55 consumers in an intertidal mangrove creek of the Curuçá estuary, northern Brazil. Primary producers showed δ13C signatures ranging between −29.2 and −19.5‰ and δ15N from 3.0 to 6.3‰. The wide range of the isotopic composition of carbon of consumers (−28.6 to −17.1‰) indicated that different autotrophic sources are important in the intertidal mangrove food webs. Food web segregation structures the ecosystem into three relatively distinct food webs: (i) mangrove food web, where vascular plants contribute directly or indirectly via POM to the most 13C-depleted consumers (e.g. Ucides cordatus and zooplanktivorous food chains); (ii) algal food web, where benthic algae are eaten directly by consumers (e.g. Uca maracoani, mullets, polychaetes, several fishes); (iii) mixed food web where the consumers use the carbon from different primary sources (mainly benthivorous fishes). An IsoError mixing model was used to determine the contributions of primary sources to consumers, based on δ13C values. Model outputs were very sensitive to the magnitude of trophic isotope fractionation and to the variability in 13C data. Nevertheless, the simplification of the system by a priori aggregation of primary producers allowed interpretable results for several taxa, revealing the segregation into different food webs. 相似文献
11.
12.
Ndombour Gning François Le Loc'h Omar T. Thiaw Catherine Aliaume Guy Vidy 《Estuarine, Coastal and Shelf Science》2010
The Flagfin mojarra, Eucinostomus melanopterus, is a marine spawner whose young individuals are common in the Sine Saloum inverse estuary (Senegal). The species offers the opportunity to study both the use of the estuarine nursery resources and the impact of the particular environment of the inverse estuary on these resources. This will lead to a better understanding of the functioning of the nursery. We investigated the resources used by juvenile Flagfin mojarra by coupling stomach contents and stable isotopes methods. 相似文献
13.
Coastal defence structures constitute the most extensive hard substrates of the Northwestern Adriatic Sea and are known to sustain rich benthic and nektonic communities. To appreciate the pattern of colonization, we studied the fish assemblage of a recently deployed breakwater. We compared observations from two years, the different sides (landward and seaward) of the barrier, and the two fringes, characterized by timing of work completion. The results indicate that colonization, still in process, follows different patterns among species. Benthic and necto-benthic species presented a striking increase in abundance and richness in the second year of colonization, while more mobile species did not evince any variation between years. Differences in mobility among species suggest that the latter group may have reached the breakwater from nearby artificial substrates, whereas the former colonized the new structure as recruits. In addition, fish assemblages differed between the two sides, likely due to variation in the environmental characteristics, and according to depth, reflecting species preferences. 相似文献
14.
Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA) 总被引:12,自引:0,他引:12
Miguel A. Goi Maria J. Teixeira David W. Perkey 《Estuarine, Coastal and Shelf Science》2003,57(5-6):1023-1048
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay. 相似文献
15.
Spatial gradients in biomass and community composition have important consequences for ecosystem structure and function. In this study, small-scale inshore-offshore (1-10 km) and vertical (1-50 m) patterns of microphytoplankton biomass and community composition are described, and the environmental controls of microphytoplankton biomass are evaluated in a coastal ecosystem of the Southern California Bight (SCB). During a two-year period, persistent inshore-offshore gradients in phytoplankton biomass and occasional inshore-offshore gradients in community composition, coincident with regional precipitation, were found, although the strength of the gradients varied between sampling periods. The chlorophyll a maximum was generally present between 15 and 45 m, the cell abundance maximum occurred in surface waters, and there was little evidence of vertical gradients in community composition. Variability in chlorophyll a concentrations was linked to variability in environmental parameters only after some rain and upwelling events. This study demonstrates that inshore-offshore patterns in phytoplankton biomass previously documented at large spatial scales (100-700 km) in the SCB can also persist at smaller scales (1-10 km), although the mechanisms for the gradients are likely to be different at the different spatial scales. The results provide a baseline data set that can be used to focus monitoring and management efforts in the SCB. In particular, this work shows that a limited number of sampling stations are sufficient for phytoplankton monitoring in Santa Monica Bay. 相似文献
16.
In Toulon Bay (France), very high phosphatase activities have been found in the zooplankton fraction>90 microm. This work was intended to specify their origin. For that purpose, larvae, juvenile and adult Crustacea (Copepods: Calanoids, Cyclopoids, Branchiopods: Cladocera, and Cirripeds) were isolated. Their activities were measured using paranitrophenyl phosphate dissolved in sea water in order to calculate Km (the enzyme half saturation concentration) and Vmax (the reaction rate when the enzyme is saturated with substrate). Vmax were referred to protein contents of the isolated organisms to calculate specific activities. For all zooplankton groups high and low affinity phosphatase activities were found. The low affinity enzyme was responsible for at least 70% of the total phosphatase activity. Its specific activity was higher for larvae than for copepodites and adults. In Cirriped nauplii this activity was particularly high with values which were several hundred times higher than that in other Crustacea. These enzymes had optimum pH close to 8.4, magnesium requirement and were competitively inhibited by orthophosphate. Experiments with intact and lysed Cirriped nauplii confirmed that living organisms had only a weak external activity and showed that most of the activity of these larvae was primarily intracellular. 相似文献
17.
Carbon and nitrogen isotopic composition was used to identify the main sources of carbon and describe the main trophic pathways in Deluge Inlet, a near-pristine mangrove estuary in tropical north Queensland, Australia. Producers' δ13C varied from −28.9‰ for mangroves to −18.6‰ for seagrass. Animals were also well separated in δ13C (−25.4‰ to −16.3‰ for invertebrates and −25.2‰ to −17.2‰ for fish), suggesting considerable differences in ultimate sources of carbon, from a substantial reliance on mangrove carbon to an almost exclusive reliance on seagrass. In general, invertebrates had lower δ15N than fish, indicating lower trophic levels. Among fish, δ15N values reflected well the assumed trophic levels, as species from lower trophic levels had lower δ15N than species from higher trophic levels. Trophic levels and trophic length were estimated based on δ15N of invertebrate primary consumers (6.1‰), with results suggesting a food web with four trophic levels. There was also evidence of a high level of diet overlap between fish species, as indicated by similarities in δ13C for fish species of higher trophic levels. Stable isotope data was also useful to construct a general model for this food web, where five main trophic pathways were identified: one based on both mangrove and microphytobenthos, one on plankton, two on both microphytobenthos and seagrass, and one based mainly on seagrass. This model again suggested the presence of four trophic levels, in agreement with the value calculated based on the difference in δ15N between invertebrate primary consumers and top piscivores. 相似文献
18.
M. Peguero-Icaza L. Sánchez-Velasco M.F. Lavín S.G. Marinone 《Estuarine, Coastal and Shelf Science》2008
Fish larvae and hydrographic data collected in the Gulf of California (GC) in December 2002 are used to describe larval fish assemblages (LFAs) and to explore their relationships with environmental variables (temperature, salinity, dissolved oxygen, fluorescence maximum, ? and superficial chlorophyll a). The Bray–Curtis dissimilarity index defined three LFAs, distributed in areas with distinctly different environmental conditions. The affinity of most of the species with the environmental characteristics of their areas of distribution could be interpreted as an indication that spawning occurred inside those areas. Particle tracking in current fields from a 3D numerical model and connectivity matrices are used to assess larval retention in the LFA areas. The technique is well suited for seas like the GC that have well-defined circulation patterns. On time scales around 30 days, retention (from 56% to 73% of the particles) occurred (1) for the North LFA in the Upper GC, (2) for the Channel-Center LFA in the anticyclone over the Northern GC and in Ballenas Channel, and (3) for the South LFA in the eddy over San Pedro Mártir basin and in the shallow zone off the peninsula. Therefore, the Lagrangian analysis revealed that the observed LFAs have a permanency long enough to allow fish larvae to remain in a favorable environment until they develop motility. The main particle export path (less than 26% of the particles) was from the North to the South LFA, following the anticyclonic main flow and coinciding with the gradient in species number and larval abundance. 相似文献
19.
We collected fishes and environmental variables in three zones (upper, middle and lower) of a small open tropical estuary during flood tide. The aim was to test for differences in fish assemblages along a gradient from freshwater to marine waters and to detect any seasonal variation in fishes and environmental variables across these zones. A total of 111 species (18 in the upper, 50 in the middle and 66 in the lower estuary) were recorded, forming three distinct fish assemblages, with the family Eleotridae dominating in the upper, Gerreidae in the middle, and Sciaenidae in the lower estuary. Only two species (Geophagus brasiliensis in the upper and the middle zones, and Eucinostomus argenteus in the middle and the lower zones) composed more than 1% of the total number of individuals in more than a single zone. Short‐term (tidal) changes in salinity in the middle estuary were associated with different assemblages in the three estuarine zones, even in winter, when the differences in salinity are lowest between the middle and the lower zones. Seasonal variation in salinity was irrelevant, except in a protected sidewater lagoon in the middle estuary. Low salinity seasonal change may be related to the lack of seasonal variation in the structure of fish assemblages in all estuarine zones. 相似文献
20.
Distribution and sources of organochlorine pesticides in water and sediments from Daliao River estuary of Liaodong Bay,Bohai Sea (China) 总被引:1,自引:0,他引:1
The levels of 19 kinds of organochlorine pesticides (OCPs) in the aqueous phase, suspended particulate matter (SPM), pore water and sediments from Daliao River estuary of Liaodong Bay (Bohai Sea) in northeast China were investigated to evaluate their potential pollution risks. The total OCPs concentrations in the aqueous phase, SPM, pore water and sediments were 3.7–30.1 ng l−1, 4.6–52.6 ng l−1, 157–830 ng l−1 and 2.1–21.3 ng g−1 dry weight, respectively. The concentrations of OCPs, in the Daliao River estuary, are in the mid-range, as compared to those reported in other estuaries worldwide. The distribution of HCHs and DDTs were different indicating different contamination sources. Lindane is the main type of HCH and continuing use in northeast China of ‘pure’ HCH (lindane) rather than technical HCH accounts for the source. The ratios of (DDE + DDD)/DDT in the samples indicate no recent inputs of these chemicals to the estuary. 相似文献