首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
高压旋流中空燃油喷雾日益广泛地应用于缸内直喷(GDI)汽油机中,为此发展了一种适合于模拟这种燃油喷雾雾化过程的薄膜喷雾模型.燃油薄膜的破碎过程采用表面波破碎理论来模拟.对Spalding蒸发模型和油滴阻力模型进行了改进,用来计算油滴的蒸发和阻力变形过程,同时引入初始喷雾液团的计算模块.在多维内燃机计算程序KIVA3的基础上建立了改进的数值计算模型,并对不同喷射条件下的定容压力容器中空旋流燃油喷雾过程进行了数值计算,对计算和实验所得的喷雾特性包括油束外形结构,油束喷雾贯穿度和油滴粒径进行了详细的比较,同时对单液滴的蒸发过程也进行了数值计算,油束模型的计算结果与实验结果吻合良好。  相似文献   

2.
采用纹影法对高压燃油喷射下的诱导激波现象进行可视化试验,结合喷油规律曲线,分析了激波对喷雾演化规律及雾化特性的影响.结果表明:在相同的燃油喷射压力及背景密度条件下,激波的产生和传播对喷雾贯穿距离的发展具有促进作用,但是对喷雾径向发展影响不大.激波对喷雾轴向的促进会进一步增强喷雾对空气的卷吸作用,有助于喷雾的快速雾化.同时,笔者提出了燃油喷射激波角计算的经验公式,实现了燃油喷射过程激波角的预测,预测结果与试验结果吻合较好.  相似文献   

3.
通过定容燃烧弹,采用高速摄像技术研究了不同环境压力、燃油温度以及喷射脉宽对音圈电机(VCM)喷油器宏观喷雾特性的影响.结果表明:在低环境压力条件下,喷雾形态呈标准的空心锥状,液膜表面可见清晰的沿流向分布的流线结构.在高环境压力条件下,喷雾主体受到较强挤压,喷雾主体周围产生明显的大尺度对称漩涡(CRV)结构.当燃油温度从30℃升至70℃时,喷雾的形态以及宏观特性未发生较明显变化.提高音圈电机的驱动电压后,喷雾的破碎长度明显减小.当喷射脉宽小于2.0 ms时,喷雾末端发生明显的坍塌.当喷雾脉宽大于3.0 ms时,喷雾的发展过程和最终形态不再发生明显改变.  相似文献   

4.
为了了解柴油机燃烧室中燃油与空气的混合及后续燃烧过程,准确地描述燃油雾化和油洋蒸发过程是至关重要的。运用激光衍射法测量注体喷雾粒度具有对喷雾无干扰,设备简单数处理迅速等优点,但这种方法对加热环境中的蒸发液雾进行测量进,由于光路上存在的温度及浓度梯度,激光被折射而偏转,结果受到严重影响,以往对柴油机喷雾的测量大都在常温不蒸发条件下进行的,而本则是通过对粒子激光衍射测量原理的深入分析,对基于激光衍射  相似文献   

5.
对柴油机燃油雾化过程进行了简要分析,并简单介绍了喷雾数值计算基本思想和喷雾模拟中应用较多的各种物理模型的类型及特点,详细说明了喷油器内部燃油流动对后续喷雾过程造成影响的原因。同时对目前常用的ELSA喷雾模型不同算法的特点进行了分析比较.并对未来喷雾模型的发展方向进行了展望。  相似文献   

6.
3维燃油喷雾碰壁数学模型   总被引:1,自引:0,他引:1  
贺萍  刘永长 《内燃机学报》1996,14(3):332-339
根据实际燃油喷雾碰壁的物理过程,基于单液滴碰壁后的性态特征,本文提出了在3维喷雾模拟框架下的一种新的喷雾碰壁数学模型,描述了碰壁液滴反弹、形成附壁射流、裂化以及油膜蒸发的现象。利用本文提出的数学模型对燃油垂直碰壁进行模拟计算,结果与高速阴影和纹影摄影图像比较吻合。  相似文献   

7.
柴油机的燃烧过程在很大程度上是由燃油和空气的混合决定的.而燃油的喷雾特性则对混合过程有重要影响。良好的喷雾特性是山喷嘴参数进行了优化设计而获得。本文对电子控制蓄压式高压喷油系统的喷嘴参数进行了优化设计,以使该系统能与柴油机燃烧室有较好的匹配,从而使柴油机获得较好的性能。  相似文献   

8.
对所获得的高压共轨燃油喷雾PIV测试图像进行了处理及分析,获得了喷雾表面波动结构、表面分裂雾化、分裂长度、喷雾局部涡旋等定性分析结果,使用PIV测试系统分析软件INSIGHT进一步处理喷雾图像, 获得了喷雾场液滴速度等信息。  相似文献   

9.
作者介绍了启喷压力对采用低惯量喷油器的直喷式柴油机性能影响的研究结果。通过采用激光全息和高速摄影等技术对燃油喷雾与气缸内燃烧过程的观察与分析,揭示启喷压力与燃油喷雾,混合气形成,扩散燃烧间的重要关系。根据研究结果,提出了直喷式柴油机采用低惯量喷油器启喷压力的一般方法。  相似文献   

10.
基于X射线CT成像技术获取了柴油喷油嘴喷孔几何结构,采用喷雾可视化技术研究了带毛刺喷孔喷雾特性.结果表明:与无毛刺喷孔相比,启喷阶段,带毛刺喷孔出口处近场喷雾湍流脉动有所增强;稳定阶段,带毛刺喷孔改变了喷雾对称结构,首先喷孔内毛刺能够从喷雾射流表面剥离出部分燃油,该部分燃油经过初次破碎后形成较为分散的液丝,其次带毛刺喷孔远场喷雾二次雾化后液滴扩散范围增大;带毛刺喷孔喷雾发展过程中出现分叉现象.  相似文献   

11.
采用数字粒子图像测速技术(DPIV)对二甲醚(DME)瞬态喷雾的速度场进行了测量,获得了DME瞬态喷雾的内部微细结构、速度矢与涡量分布等信息,并探讨了启喷压力、喷孔直径、环境压力等参数对喷雾速度场的影响规律。试验结果表明:任一喷雾断面的轴向速度以轴心处为最大,向外沿径向逐渐减小,基本呈对称分布;喷雾轴心速度随喷雾贯穿距离的增大而不断减小,且喷孔直径越小、环境压力越大,其轴向速度衰减率越大,而启喷压力对轴向速度衰减率影响不大;启喷压力、喷孔直径、环境压力对喷雾发展的稳定性、液滴尺寸和速度矢的空间分布均匀性,以及喷雾发展的形态等均具较大影响。数据分析发现,DME喷雾断面的速度分布具有自模性,并据此提出了DME喷雾速度的无因次分布数学表达式。  相似文献   

12.
小型直喷式柴油机喷雾特性的试验研究   总被引:15,自引:0,他引:15  
为了掌握喷雾的结构物特性,利用高速摄像装置和高压容器拍摄了喷雾的逆光图像,并研究了喷雾周围介质压力对喷雾贯穿距离、喷雾锥角以及蒸发等喷雾特性的影响。在液滴数密度较大的条件下,燃料液滴的蒸发速率传热过程和雾化质量的影响;喷射妆期喷雾的贯穿距离和贯穿速度几乎不受介质物影响;喷雾的贯穿跨离受喷油压力的影响不大,但随着喷油压力的提高,喷雾锥角增大,喷雾质量得到改善。  相似文献   

13.
王志磊  刘文斌  吴亚龙  宋杨 《柴油机》2019,41(5):18-20, 34
采用CFD软件,基于欧拉法和拉格朗日离散法分别模拟喷油器内部流动及喷射特性,并将喷射计算结果导入燃烧模型实现联合仿真。仿真计算不同喷孔形式的喷射特性,得到了其内部速度、压力、气相体积分数(空穴)及喷雾场。仿真结果表明:在相同轨压下,小孔径喷孔油滴速度较大、贯穿距长、喷雾锥角小;燃烧湍流动能大,且较多soot打在气缸盖上,影响柴油机的可靠性。  相似文献   

14.
本文采用高速摄影,利用激光衰减法,研究了小型直喷式柴油机缸内燃油雾特民生,特别是在缸内空气运动对燃油喷雾特性影响方面,进行了比较详细的研究,研究结果表明,在柴油机狭小的燃烧室内,自由喷雾得不到充分发展便得快与燃烧室壁面发生碰撞,故油束的锥角比较小,燃油的密集程度比较高,受空气涡流吹拂而发生弯曲的程度很小,较强的空气涡流会降低喷雾的贯穿速度。  相似文献   

15.
闪急沸腾喷雾速度场的LDA研究   总被引:2,自引:0,他引:2  
为探索代用燃料液化石油气LPG和二甲醚DME的喷雾机理,采用LDA技术测量了喷雾粒子的速度分布。为安全起见,用制冷剂R12作试验液体,它与LPG和DME有相似的物理特性。为做比较,在相同试验条件下对传统柴油喷雾进行了测量。考察了喷雾模式对速度分布的影响。结果表明,R12喷雾的速度分布比传统柴油喷雾均匀得多,前者的平均径向速度远大于后者。这被认为归因于闪急沸腾大大改善了雾化和液气混合。  相似文献   

16.
This paper presents studies of spray characteristics and controlling mechanism of fuel containing CO2. Using diesel fuel containing CO2 gas, experiments were conducted on diesel hole-type nozzles and simple nozzles. The steady spray and transient spray characteristics were observed and measured by instantaneous shadowgraphy, high-speed photography, phase Doppler anemometry (PDA) and LDSA respectively. The effects of CO2 concentration in the fuel, the injection pressure, the nozzle L/D ratio, surrounding gas pressure and temperature on the atomization behavior and spray pattern were evaluated. The results show that the injection of fuel containing CO2 can greatly improve the atomization and produce a parabolic-shaped spray; and the CO2 gas concentration, surrounding gas pressure, temperature and nozzle configuration have dominant influences on spray characteristics of the fuel containing CO2. New insight into the controlling mechanism of atomization of the fuel containing CO2 was provided.  相似文献   

17.
通过对多流体碱雾发生器中伴随气固两相流的蒸发喷雾射流的数值模拟,得到了碱雾发生器内气液固三相的速度矢量场.计算结果表明,气体轴向速度呈中间高两头低的对称分布;对于不同粒径的液滴,呈现出不同的空间分布规律,大液滴由于惯性大,可以穿越周围的气流区,比小液滴有更大的扩展角;在喷嘴出口2倍管道直径区域,由于雾化液滴与固体颗粒存在较大的速度差,有利于固体颗粒的碰撞增湿.  相似文献   

18.
进气涡流比对直喷式柴油机油束碰壁过程影响的研究   总被引:3,自引:2,他引:3  
本采用高速摄影技术,研究了小型直喷式柴油机缸内空气运动对油束碰壁过程的影响。研究结果表明,在小型直喷式柴油机中,燃油壁面喷射的反溅作用是燃油雾化过程中的重要阶段。油束在碰壁过程中,其锥角及贯穿速度均发生变化。不同的进气涡流强度,壁面油束的形状及其发展速度均不同,顺涡流方向壁面油束的扩展速度较快,随着涡流强度的增加,壁面油束只出现在顺涡流方向。空气涡流对燃油与空气混合的促进作用主要发生在油束与燃烧  相似文献   

19.
This paper deals with the numerical simulation of the vaporisation of an unsteady fuel spray at high ambient temperature and pressure solving the appropriate conservation equations. The extended droplet vaporisation model accounts for the effects of non-ideal droplet evaporation and gas solubility including the diffusion of heat and species within fuel droplets. To account for high-temperature and high-pressure conditions, the fuel properties and the phase boundary conditions are calculated by an equation of state and the liquid/vapour equilibrium is estimated from fugacities. Calculations for an unsteady diesel-like spray were performed for a gas temperature of 800 K and a pressure of 5 MPa and compared to experimental results for droplet velocities and diameter distribution. The spray model is based on an Eulerian/Lagrangian approach. The comparison shows that the differences between the various spray models are pronounced for single droplets. For droplet sprays the droplet diameter distribution is more influenced by secondary break-up and droplet coagulation.  相似文献   

20.
Droplet collision occurs frequently in regions where the droplet number density is high. Even for Lean Premixed and Pre-vaporized (LPP) liquid sprays, the collision effects can be very high on the droplet size distributions, which will in turn affect the droplet vaporization process. Hence, in conjunction with vaporization modeling, collision modeling for such spray systems is also essential. The standard O’Rourke’s collision model, usually implemented in CFD codes, tends to generate unphysical numerical artifact when simulations are performed on Cartesian grid and the results are not grid independent. Thus, a new collision modeling approach based on no-time-counter method (NTC) proposed by Schmidt and Rutland is implemented to replace O’Rourke’s collision algorithm to solve a spray injection problem in a cylindrical coflow premixer. The so called “four-leaf clover” numerical artifacts are eliminated by the new collision algorithm and results from a diesel spray show very good grid independence. Next, the dispersion and vaporization processes for liquid fuel sprays are simulated in a coflow premixer. Two liquid fuels under investigation are jet-A and Rapeseed Methyl Esters (RME). Results show very good grid independence in terms of SMD distribution, droplet number distribution and fuel vapor mass flow rate. A baseline test is first established with a spray cone angle of 90° and injection velocity of 3 m/s and jet-A achieves much better vaporization performance than RME due to its higher vapor pressure. To improve the vaporization performance for both fuels, a series of simulations have been done at several different combinations of spray cone angle and injection velocity. At relatively low spray cone angle and injection velocity, the collision effect on the average droplet size and the vaporization performance are very high due to relatively high coalescence rate induced by droplet collisions. Thus, at higher spray cone angle and injection velocity, the results expectedly show improvement in fuel vaporization performance since smaller droplet has a higher vaporization rate. The vaporization performance and the level of homogeneity of fuel–air mixture can be significantly improved when the dispersion level is high, which can be achieved by increasing the spray cone angle and injection velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号