首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Counter-selection is a useful gene manipulation technique for repeated gene disruptions, gene shufflings and gene replacements in yeasts. We developed a novel counter-selection system using a galactose-inducible growth inhibitory sequence (Kawahata et al.1999. Yeast 15: 1-10). This counter-selection marker, named GAL10p-GIN11, has several advantages over previous counter-selection markers, i.e. use of an inexpensive galactose medium for counter-selection, combined use with any transformation markers for gene introduction, and no requirement of specific mutations in the host strains. The GIN11 sequence, which is a part of an X-element of the subtelomeric regions, contained a conserved autonomously replicating sequence, causing the possibility of inefficient chromosomal integration. We isolated GIN11 mutants that lost the replication activity but retained the growth-inhibitory effect when overexpressed. A mutant GIN11M86 sequence was selected and fused to the CUP1 promoter for the counter-selection on a copper-containing medium. The GALp-GIN11M86 and the CUPp-GIN11M86 were used for constructing sets of integrating plasmids containing auxotrophic markers involving HIS3, TRP1, LEU2, URA3 or ADE2, or a drug-resistant marker PGKp-YAP1. In addition, a set of gene disruption cassettes that contained each of the auxotrophic markers and the GALp-GIN11M86, which were flanked by direct repeats of a hisG sequence, were constructed. The counter-selectable integrating plasmids and the gene disruption cassettes can allow the markers to be used repeatedly for yeast gene manipulations.  相似文献   

2.
Novel vectors that use the Pichia pastoris INO1 gene as a selectable marker and exploit the natural inositol auxotrophy of the fission yeast are described. These plasmids also contained other features desirable in a plasmid cloning vector. These plasmids were evaluated in other species of Schizosaccharomyces and found to replicate autonomously in another variety of S. pombe, S. pombe var. malidevorans. These plasmids can be used for transformation of any wild-type S. pombe strain without the need for selection by induced auxotrophic mutations, or by selection by drug resistance markers, and should greatly assist genetic and molecular manipulations in these yeasts.  相似文献   

3.
An endo-β(1, 4)glucanase encoding gene from fungal origin has been expressed in a brewing yeast strain. The yeast transformation was carried out using a previously reported system based in the acquisition of cycloheximide resistance. The plasmid transferred to brewing yeast showed some changes in restriction pattern of the 2 μ portion after transformation while cycloheximide resistance marker and endoglucanase gene were not affected. The drug resistance phenotype showed by the recombinant yeast was highly stable in non-selective conditions. The endoglucanase enzyme was detected in cell-free culture medium and showed high activities in liquid and solid media.  相似文献   

4.
A transformation system for the filamentous yeast Trichosporon cutaneum based on auxotrophic markers is presented and techniques for the induction, isolation and characterization of mutants are described. A number of auxotrophic mutants were isolated and characterized by using biosynthetic precursors and/or inhibitors. A mutant unable to grow in the presence of ornithine could be complemented successfully by spheroplast transformation experiments using the cloned Aspergillus nidulans ornithine transcarbamoylase gene (argB gene) as selection marker with an efficiency of 5-100 transformants per microgram of DNA. In these transformants the heterologous argB gene was present in multiple tandem copies and the transforming DNA was found to remain stable after more than 50 generations in non-selective media. The same mutant could be complemented by a T. cutaneum cosmid gene library and a complementary cosmid was subsequently isolated from this library by a sib-selection strategy. This cosmid transformed T. cutaneum spheroblasts with an efficiency of 50-200 colonies per microgram of DNA. Southern blot analyses were consistent with the view that the transforming sequences became stably integrated into the host genome at the homologous site.  相似文献   

5.
A transformation system using resistance to the antibiotic cycloheximide as a dominant selectable marker was developed for the pathogenic yeast Cryptococcus neoformans. A 3.5 kb DNA fragment containing a gene encoding the ribosomal protein L41 was cloned from a wild-type strain of C. neoformans which is sensitive to cycloheximide. The open reading frame of the L41 gene contains five introns and encodes a protein of 107 amino acids, which is similar to those reported for other yeasts. The cycloheximide resistance gene to be used as a marker was constructed by replacing a DNA segment of the wild-type L41 gene, which contained the amino acid proline at its 56th position with a homologous DNA segment from a mutant strain resistant to cycloheximide that contained leucine in that position. Cycloheximide resistant transformants were obtained by electroporation on YEPD plates, supplemented with 10-20 microg/ml cycloheximide, at a maximum efficiency of 300 transformants/microg plasmid DNA. While with other genes, most transformants of serotype D in C. neoformans maintain the transforming DNA as episomes, the cycloheximide-resistant transformants were all the result of ectopic genomic integration events.  相似文献   

6.
We describe the development of a new transformation system, using multiple auxotrophic marker genes, for the fission yeast Schizosaccharomyces pombe. We developed three new auxotrophic marker genes (arg12(+), tyr1(+) and ade7(+)) and generated a new host strain, YF043, by Cre-loxP-mediated gene disruption. YF043 possessed six mutated biosynthetic genes (leu1-32, ura4-M190T, arg12::loxP, tyr1::loxP, ade7::loxP and his2::loxP). The combination of this host strain and the new selectable markers can be used for gene disruption using the same preexisting transformation systems. In addition, Sz. pombe vectors were constructed, containing selectable marker genes that complement the auxotrophies of YF043. These new vectors are available for gene disruption and heterologous protein expression in strain YF043. The new Sz. pombe host strain will be a useful tool for molecular genetic studies of Sz. pombe where multiple recombinant modifications or multiple mutations are needed.  相似文献   

7.
The ILV1 gene of the yeast Arxula adeninivorans LS3 (AILV1) has been cloned from a genomic library, characterized and used as an auxotrophic selection marker for transformation of plasmids into this yeast. One copy of the gene is present in the Arxula genome, comprising 1653 bp and encoding 550 amino acids of the threonine deaminase. The protein sequence is similar (60·55%) to that of the threonine deaminase from Saccharomyces cerevisiae encoded by the gene ILV1. The protein is enzymatically active during the whole period of cultivation, up to 70 h. Maximal activities, as well as protein concentrations of this enzyme, were achieved after cultivation times of 20–36 h. The AILV1 gene is a suitable auxotrophic selection marker in transformation experiments using an Arxula adeninivorans ilv1 mutant and a plasmid containing this gene, which is fused into the 25S rDNA of Arxula adeninivorans. One to three copies of the linearized plasmid were integrated into the 25S rDNA by homologous recombination. Transformants resulting from complementation of the ilv1 mutation can be easily and reproducibly selected and in addition are mitotically stable. Therefore, the described system is preferred to the conventional selection for hygromycin B resistance. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
A novel two-step gene replacement protocol was developed to construct a recombinant industrial yeast free of bacterial and drug-resistant marker sequences. A yeast strain exhibiting cerulenin resistance conferred by a dominant mutation of FAS2 was previously shown to produce high levels of a flavor component of Japanese sake. A N- and C-terminally truncated portion of the mutant FAS2 gene was subcloned to an integrating plasmid containing an aureobasidin A-resistant transformation marker and a galactose-inducible growth inhibitory sequence (GAL10p::GIN11). The plasmid was targeted into the chromosomal FAS2 locus of sake yeast Kyokai no. 7, resulting in a tandem repeat of inactive FAS2 sequences surrounding the integrated plasmid sequences. Cells containing the integrated plasmid were unable to grow on galactose medium due to the inhibitory effect of GAL10p::GIN11. This growth inhibition allowed efficient counter-selection for cells that had undergone homologous recombination between the FAS2 repeats by their growth on galactose medium. This recombination event resulted in loss of the integrated plasmid sequences and the resulting strains should contain a single copy of either wild-type or cerulenin-resistant FAS2. The selected cerulenin-resistant strains produced approximately 3.7-fold more ethyl caproate, a flavor component, than the Kyokai no. 7 strain. Southern blot and sequence analyses confirmed the presence of the FAS2 mutation and the absence of integrated plasmid sequences in the genome of the selected strain. This gene replacement method provides a straightforward approach for the construction of recombinant industrial yeasts free of undesirable DNA sequences.  相似文献   

9.
10.
11.
The industrially important yeast Candida utilis is widely used in the production of food and medical materials, but its practical host-vector system has not been well developed. In order to construct a food-grade host-vector system, we isolated the YAP1 homologue, CuYAP1, of C. utilis IAM4264 and evaluated its use as a selection marker in transformation. A DNA probe was obtained by PCR using degenerate primers and the CuYAP1-encoding 438 amino acid protein was isolated by hybridization. Although the amino acid identity of Yap1 and CuYap1 was 28.7% as a whole, the characteristic bZip region and two cysteine-rich domains (CRDs) showed a higher homology. CuYAP1 was inserted in a CuGAP1 expression cassette of the C. utilis ARS vector pRI177, and C. utilis AHU3053 was transformed with this plasmid. A number of transformant colonies grew in the presence of cycloheximide, which indicated that CuGAP1-CuYAP1 is an effective selection marker. The transformant also showed higher resistance to other agents, including cadmium and fluconazole. The overexpression of CuYAP1 in S. cerevisiae also resulted in increased resistance to various types of drugs.  相似文献   

12.
Sophorolipids are surface-active compounds synthesized by the non-pathogenic yeast Candida bombicola. Over recent decades much effort has been spent to optimize culture conditions in order to improve the yield and production process. As far as we know, however, hardly any attention has been given to the genetics of the producing yeast strain itself and there are no published results available on the genetic engineering of C. bombicola. Nevertheless, this can be a useful tool for the study of the sophorolipid synthesis pathway and open up perspectives for improved production. A first step is the development of a suitable transformation and selection method. This article describes the creation and selection of an uracil auxotrophic C. bombicola mutant, which can be transformed back to prototrophy with the species' own orotidine 5'-phosphate decarboxylase or URA3 gene. Successful transformation was confirmed by a PCR-based method discriminating between the wild-type and mutated URA3 gene.  相似文献   

13.
Interest has been increasing in the thermotolerant methylotrophic yeast Hansenula polymorpha as a useful system for fundamental research and applied purposes. Only a few genetic marker genes and auxotrophic hosts are yet available for this yeast. Here we isolated and developed H. polymorpha TRP1, MET2 and ADE2 genes as selectable markers for multiple genetic manipulations. The H. polymorpha TRP1 (HpTRP1), MET2 (HpMET2) and ADE2 (HpADE2) genes were sequentially disrupted, using an HpURA3 pop‐out cassette in H. polymorpha to generate a series of new multiple auxotrophic strains, including up to a quintuple auxotrophic strain. Unexpectedly, the HpTRP1 deletion mutants required additional tryptophan supplementation for their full growth, even on complex media such as YPD. Despite the clearly increased resistance to 5‐fluoroanthranilic acid of the HpTRP1 deletion mutants, the HpTRP1 blaster cassette does not appear to be usable as a counter‐selection marker in H. polymorpha. Expression vectors carrying HpADE2, HpTRP1 or HpMET2 with their own promoters and terminators as selectable markers were constructed and used to co‐transform the quintuple auxotrophic strain for the targeted expression of a heterologous gene, Aspergillus saitoi MsdS, at the ER, the Golgi and the cell surface, respectively. The nucleotide sequences presented here were submitted to GenBank under Accession Nos AY795576 (HpTRP1), FJ226453 (HpMET2) and FJ493241 (HpADE2), respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Dominant drug resistance markers offer experimental flexibility in the study of Saccharomyces cerevisiae by eliminating the dependence on auxotrophic mutations and, because they are phenotypically neutral, avoid the deleterious effects of auxotrophic mutations. We have developed a new dominant resistance marker, dsdAMX4, for use in the genetic manipulation of S. cerevisiae. The dsdA gene, which is derived from Escherichia coli and encodes a D-serine deaminase, confers to S. cerevisiae resistance to D-serine and the ability to use D-serine as a nitrogen source. Here we describe the construction of a dsdAMX4 cassette, capable of expression in S. cerevisiae, and the characterization of this new marker for use in chromosomal gene disruption. The unique selection properties of the dsdAMX4 cassette make it an important addition to the existing array of S. cerevisiae genetic tools.  相似文献   

15.
The influence of the auxotrophic deficiencies of the host strain and expression vector selection on the production of a heterologous protein was investigated. Heterologous xylanase production by two prototrophic S. cerevisiae transformants, containing either a plasmid-based, YEp-type expression system or an integrative, YIp-type expression system, were compared with production by an auxotrophic transformant, containing an identical YEp-type expression system, in batch and continuous cultivation, using a chemically defined medium. Heterologous xylanase production by the auxotrophic strains in defined medium was critically dependent on the availability of amino acids, as extracellular xylanase production increased dramatically when amino acids were over-consumed from the medium to the point of saturating the cell. Saturation with amino acids, indicated by an increased leakage of amino acids from the cell, was thus a prerequisite for high level of heterologous protein production by the auxotrophic strain. Maximal xylanase production levels by the auxotrophic strain corresponded to the levels obtained with a similar prototrophic strain during cultivation in defined medium without amino acids. Superfluous auxotrophic markers thus had a strong deleterious effect on heterologous protein production by recombinant yeasts, and the use of such strains should be limited to initial exploratory investigations. The increased copy number and foreign gene dosage of the YEp-based expression vector, stabilized by the ura3 fur1 autoselection system, significantly improved production levels of heterologous xylanase, compared to the YIp system, which is based on a single integration into the yeast genome. No evidence was found of the possible saturation of the host secretory capacity by multicopy overexpression. Stable production of heterologous xylanase at high levels by the prototrophic YEp-based recombinant strain, compared to the YIp system, was demonstrated.  相似文献   

16.
In this work, we developed molecular tools used in standard laboratory yeast strains, such as the cre–loxP system, so that they can be used with natural and industrial prototrophic yeast species. We constructed a new generation of dominant cassettes, with mutated loxP sites (loxLE and lox2272) and selectable drug markers, to create heterothallic strains and auxotrophic mutants without incurring in the risk of generating chromosomal rearrangements. We have shown that our newly developed loxLE–hphNT1–loxRE and lox2272–natNT2–lox2272 gene‐disruption cassettes can be present in the yeast genome together with the widely used loxP–marker gene–loxP cassettes without any recombination between the lox sequences. Moreover, we also developed a new phleomycin‐resistant Cre‐expressing vector (to excise multiple markers simultaneously) and two new standard loxP deletion cassettes containing hygromicin B and cloNAT as selecatable markers. To validate these cassettes, we created heterothallic auxotrophic S. cerevisiae strains, without the risk of incurring gross chromosomal rearrangements, and we showed an example of a fitness study of intraspecific hybrids deriving from parents with different adaptations to carbon‐limited resources. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non‐homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR‐amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour‐intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ‐mediated integrative transformation with PCR‐amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
We have developed a selection system for hybrids by protoplast fusion using dominant selective drug resistance markers, Tn601(903) against geneticin and AUR1-C against aureobasidin A, and reporter genes, ADH1p-PHO5-ADH1t and CLN2p-CYC1-lacZ, in Saccharomyces cerevisiae. To examine the effectiveness of this system, plasmids with each marker and reporter gene were introduced into auxotrophic sake yeasts. From the resulting transformants, eight colonies were screened by protoplast fusion in combination with the drug resistance markers and the reporter genes. Among them, seven strains were judged as hybrids between parental strains by analysis of growth on a minimal medium. This selection system was applied to wine yeasts having no genetic markers. Six strains were regarded as hybrids between parental strains by polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analysis of the MET2 gene and by karyotype analysis using a contour-clamped homogeneous electric field (CHEF). We propose that the plotoplast fusion using dominant selective geneticin- and aureobasidin A-resistance markers and reporter genes is useful for the selection of hybrids from wine yeasts, which are homothallic and have low sporulation ability.  相似文献   

19.
用于黑曲霉遗传操作的筛选标记基因非常有限,而基因改造往往涉及诸多基因的敲除或表达,有限的筛选标记基因难以满足需要.该文构建了以pyrG为筛选标记的黑曲霉遗传转化系统,并利用该系统使红色荧光蛋白rfp在黑曲霉中成功表达.首先,运用同源重组原理完全敲除pyrG基因,在含有5-氟乳清酸和尿苷/尿嘧啶的培养基平板进行筛选,获得...  相似文献   

20.
A set of yeast strains based on Saccharomyces cerevisiae S288C in which commonly used selectable marker genes are deleted by design based on the yeast genome sequence has been constructed and analysed. These strains minimize or eliminate the homology to the corresponding marker genes in commonly used vectors without significantly affecting adjacent gene expression. Because the homology between commonly used auxotrophic marker gene segments and genomic sequences has been largely or completely abolished, these strains will also reduce plasmid integration events which can interfere with a wide variety of molecular genetic applications. We also report the construction of new members of the pRS400 series of vectors, containing the kanMX, ADE2 and MET15 genes. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号