首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 55 毫秒
1.
青藏高原清水河多年冻土区铁路路基沉降变形特征研究   总被引:3,自引:1,他引:3  
通过埋设在青藏铁路路基中两个断面内的6条沉降观测管3 a来的地基沉降变形资料,研究了高原多年冻土区铁路路基的沉降变形特征,分析了填筑铁路路基对下伏多年冻土融化变形的影响。研究表明,由于受到填筑路基时赋存在路基填料内的热量的影响,铁路路基下伏多年冻土上限在施工初期会有一个明显的下移沉降,铁路路基也随之有一个较大幅度的工后下沉变动,随着时间的推移,路基下降速率会逐渐下降,但在短时间内不会停止下来,而且由于太阳辐射和路基边坡形状的影响,路基向阳面与背阴面的变形有较大的差别,且在近南北向展布的路基上表现最为明显。  相似文献   

2.
米海珍 《冰川冻土》1998,20(2):116-119
以相变热传导理论为基础,利用实测路面温度资料计算了多年冻土路其中冻土上限的变化趋势,认为上限的稳定是一个时间相当长的过程。  相似文献   

3.
青藏铁路多年冻土路基稳定性及防治措施研究   总被引:1,自引:7,他引:1  
李勇  韩龙武  许国琪 《冰川冻土》2011,33(4):880-883
青藏铁路冻土路基的稳定性是多年冻土区列车安全运营的重要保证.影响路基稳定性的主要因素是路基地温场的变化、路基两侧地表水以及地下水(冻结层上水、冻结层间水)和地层含冰量大小,即冻土路基防护措施的强弱和水热影响程度.保证冻土路基稳定性的防治原则是减少太阳辐射和周围环境的水影响,易采用路基两侧排水、增加片(碎)石护坡(道)、...  相似文献   

4.
青藏铁路沿线多年冻土区地温场变化规律   总被引:13,自引:6,他引:13  
青藏铁路通过约550km的多年冻土区,统计和分析青藏高原多年冻土分布区主要气象台站的资料可以看出,近30a来高原多年冻土区的气候变化总的趋势是向着气温升高的方向发展的,气温的变化对多年冻土热状态的扰动主要表现在地温场的变化上.30多年来高原气温升高0.45℃左右,并引起冻土地温平均升高了0.2~0.3℃.分析青藏铁路通过的多年冻土地区典型地段测温孔资料,发现多年来气候转暖已经使冻土上部(20m以上)地温明显升高,影响深度已经波及到了40m.  相似文献   

5.
站场路基的宽度为单线普通路基宽度的两倍。结合青藏铁路试验工程观测数据 ,分析了站场路基地温场及多年冻土人为上限的特征 ,探讨了路基的冻结和融化过程的规律 ,阐述了多年冻土区路基的稳定性问题。  相似文献   

6.
气候变化背景下青藏铁路沿线多年冻土变化特征研究   总被引:1,自引:0,他引:1  
多年冻土是复杂地气系统的产物, 以升温为特征的气候变化不可避免地对其产生影响. 基于青藏铁路沿线8个天然场地2006-2011年的地温监测资料, 分析了气候变化背景下, 多年冻土升温特征及上限变化规律, 并对低、高温冻土的变化特征进行了对比分析. 结果表明: 2006-2011年监测期间, 铁路沿线多年冻土正在经历明显的升温趋势, 上限附近和15 m深处平均升温率分别为0.015 ℃·a-1和0.018 ℃·a-1, 其中, 低温冻土区在上述两个深度处升温均比高温冻土区显著; 多年冻土上限深度也表现出一定的增深趋势, 平均增深速率为4.7 cm·a-1, 其中, 高温冻土区增深速率大于低温冻土区. 低、高温冻土对气候变化的响应表现出了较大差异. 同时, 受局地因素的影响, 不同区域在升温和上限增深上也存在一定差异.  相似文献   

7.
大兴安岭北部多年冻土地区路基沉陷研究   总被引:13,自引:5,他引:13  
原喜忠 《冰川冻土》1999,21(2):155-158
通过对该区4个路段12个断面为期3a的路基沉陷观测并结合线路普查和分析表明,多年冻土路基稳定性与地基的水、热状况密切相关,受自然环境和人为因素的制约。合理布线、保护植被、改善排水、合理确定路基高度以及设置护坡、基底反铺塔头、采用土工聚合材料和无基管涵结构等,是保持该地区路基稳定的有效措施。  相似文献   

8.
葛建军 《冰川冻土》2003,25(8):52-53
抛填片(块)石通风路堤具有保护多年冻土的作用,根据高原多年冻土区路基常见病害及青藏铁路试验路基设计原则,初步探讨并预测该路基结构的适应性,并在清水河试验路基段进行了实践应用,给出了保护效果的定量描述。  相似文献   

9.
青藏铁路高原多年冻土区片石通风路基   总被引:3,自引:0,他引:3  
葛建军 《冰川冻土》2003,25(Z1):52-53
抛填片(块)石通风路堤具有保护多年冻土的作用, 根据高原多年冻土区路基常见病害及青藏铁路试验路基设计原则, 初步探讨并预测该路基结构的适应性, 并在清水河试验路基段进行了实践应用, 给出了保护效果的定量描述.  相似文献   

10.
青藏铁路管道通风试验路基地温变化及热状况分析   总被引:3,自引:6,他引:3  
基于青藏铁路北麓河试验段管道通风路基在2个冻融循环周期内的地温监测资料,分析了路基温度的发展、温度场分布特征及多年冻土的热流量变化.结果表明:通风管埋设于路堤中部的路基温度变化和发展情况与一般路基类似,路基在施工后的2个冻融周期内仍处于整体升温的过程;通风管埋设于路堤下部的路基,虽然前2个冻融循环周期内土体温度与原始状态相比同样有所升高,但开始出现逐渐降低的趋势,同时地温场的分布在横向上的对称性也比较好,在热交换方面,一般填土路基和通风管位于路堤中部的路基在施工后的前2个冻融循环周期内一直处于吸热过程,而通风管位于路堤下部的路基在经历了第1个周期的持续吸热过程后,在第2个冻融循环周期内已经开始放热。  相似文献   

11.
青藏铁路斜坡段路基是铁路长期运营潜在的不安全隐患,评价现今和未来斜坡路基稳定性能为铁路安全通行提供保证。多年冻土斜坡路基稳定性分析不同于普通土路基,冻融交界面位置是斜坡路基稳定性重要影响因素。本文通过监测安多试验段的变形特征,详细分析了各个地段路基的变形规律,建立了斜坡路基稳定性评价模型。  相似文献   

12.
青藏高原冻土退化的研究   总被引:21,自引:2,他引:21  
青藏高原从70年代后期气温持续转暖,导致高原多年冻土呈区域性退化趋势。年平均地温升高0.1~0.5℃,在边缘地带垂向上形成不衔接冻土和融化夹层,多年冻土分布下界上升40~80 m,高原多年冻土总面积约减少10×104km2。  相似文献   

13.
青藏铁路多年冻土斜坡段路基稳定性对铁路长期运营具有潜在的威胁,分析评价当前和未来斜坡路基稳定性可指导路基工程的正确设计和施工,从而保证铁路的安全运营。多年冻土地温变化使斜坡路基稳定性分析不同于普通土路基,其冻融交界面位置是制约斜坡路基稳定性的关键所在。通过对安多试验段3a来的地温监测,分析路基地温变化规律,并预测了未来50a内试验段地温的变化趋势,建立了当前和未来条件下的斜坡路基稳定性模型,计算分析了斜坡路基的稳定性。通过上述研究,取得以下认识和结论:(1)铁路路堤的填筑,引起多年冻土温度场重分布;由于坡向不对称和几何不对称,使得地温场存在不对称;(2)依据冻融界面位置和活动层的地温特征将冻土路基划分为4个不同时期,即冬季严寒期(1~2月)、春夏融化活动期(3~8月)、最大融深期(9~10月)及回冻活动期(11~12月);通过计算对比分析,每年最大融深期的稳定性系数最小;(3)数值分析的预测结果表明,20a以后,安多段试验段路基的多年冻土完全退化,在所预测的第10年最大融深期稳定性系数最小。  相似文献   

14.
青藏铁路片石护坡路堤温度特性分析   总被引:5,自引:3,他引:2  
通过对青藏铁路清水河段片石护坡路堤和普通路堤实体工程进行的地温监测,对比分析了两种路堤体内及基底的温度特性,分析结果表明采用片石护坡措施的路堤,与普通路堤相比,降温效果好,负积温量值大,最大融化深度抬升幅度也较大,因此,片石护坡能够有效发挥降低地温、保护多年冻土的作用。  相似文献   

15.
青藏铁路多年冻土地区碎石护坡路基非线性分析   总被引:1,自引:0,他引:1  
为了研究碎石护坡对冻土区路基温度场的影响,以青藏铁路试验段现场观测的气候和地质资料为上边界条件,运用带相变瞬态温度场有限元数值解法,对不同厚度的碎石护坡路基进行了分析。结果表明:粒径为10 cm的碎石护坡对多年冻土区路基的稳定性有保护作用;碎石护坡对路基坡脚附近地温影响较大,采用碎石护坡对防止路基纵向裂缝的产生有一定的作用;实际应用中碎石层厚度不能太厚。  相似文献   

16.
青藏铁路冻土区路基工程安全可靠性监测技术研究   总被引:5,自引:0,他引:5  
通过对冻土区路基工程和冻土之间相互作用过程的分析,提出冻土区路基工程的安全可靠性监测关键技术一是监测方法,二是监测手段,三是数据分析。冻土区路基工程的安全可靠性首先取决于工程周围和工程基底多年冻土的热稳定性,其次取决于发生变形的路基填土厚度及其基底融化层厚度。因此,路基顶面以下不同深度地温监测和年际冻融季节时段路基土层变形监测是冻土区工程长期可靠性监测的主要指标。青藏铁路自然条件的严酷性,要求监测手段具有可靠性和耐久性以及对复杂自然条件变化的适应性。文章提出一种自动观测多年冻土地温和路基变形,并能够实现数据无线传输的现场监测系统设计方案,通过现场试验,证明这种监测系统能够适应青藏高原恶劣的自然条件,减轻了人工监测的劳苦,具有可靠性和耐久性。作者还提出了能够简便判断冻土区工程安全可靠性的监测数据分析方法,对目前冻土区工程安全可靠性分析具有一定的理论指导作用。  相似文献   

17.
贾海锋  刘鑫 《工程地质学报》2002,10(S1):478-481
青藏高原多年冻土地区具有特殊的地质地理环境,形成独特的冻土工程地质条件。论述了青藏铁路沿线的多年冻土分布特征,阐述了由于人类工程活动与自然环境相互作用而引起的冻胀、融沉和不良冻土工程地质现象及其对铁路建设的影响。  相似文献   

18.
冻土区路基的安全可靠性取决于路基地温场特征和路基面抗自然侵蚀特征。在路基基床上部修筑遮阳棚和在边坡上修筑遮阳板既可阻挡太阳对路基面和路基边坡的直接辐射,改变路基地温场形态,降低土层温度,又可防止降水渗入路基或降雪覆盖路面。这对防止冻土退化,提高冻土区铁路路基安全可靠性是一种非常有效而又简单易行的工程措施。本文以青藏铁路冻土区遮挡式路基结构路基表面温度数据和该地段气象资料为基础,运用带有相变的一维热传导方程模拟分析了青藏铁路长期运营过程中遮挡式路基结构对冻土区路基人为上限的抬升效果及对路基稳定性的影响,认为遮挡式路基结构是一种安全可靠的冻土区路基工程结构形式,同时也是未来铁路运营过程整治路基病害的一种有效工程措施。  相似文献   

19.
基于青藏铁路路基变形与地温观测数据, 研究了多年冻土区路基下融化夹层特征及其对路基沉降变形的影响。结果表明:在已有监测场地中, 青藏铁路沿线天然场地融化夹层发育较少, 而路基下融化夹层发育较多, 低温冻土区路基下融化夹层能够逐渐完全回冻使其消失, 高温冻土区大部分路基下融化夹层有进一步发展的趋势。高温冻土区路基下融化夹层厚度的增加主要是由多年冻土人为上限的下降引起的。当融化夹层下部为高含冰量冻土时, 融化夹层与路基沉降变形关系密切, 路基易产生较大的沉降变形。当融化夹层下部为低含冰量冻土时, 路基沉降变形较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号