首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of eaq-, H-atom and OH radicals with 3-pyridine methanol (3-PM) and 3-pyridine carboxaldehyde (3-PCA) have been studied at various pHs using pulse radiolysis technique. eaq- was found to be highly reactive with both 3-PM and 3-PCA (k approx. 1010 dm3 mol1 s-1). Semi-reduced species formed in both cases were strongly reducing in nature. In the case of 3-PM, electron addition leads to the formation of pyridinyl radicals whereas in the case of 3-PCA, PyCHOH type radicals are formed. At pH 6.8, H-atom reaction with 3-PCA also gives semi-reduced species (PyCHOH), whereas at pH 1, H-atoms add to the ring. (CH3)2˙COH radicals were found to transfer electron to 3-PCA at all the pH values tested and by making use of changes in the absorption spectra, pKa values of the semi-reduced species were determined to be 4.5 and 10.6. OH radicals were found to undergo addition reaction with 3-PCA, whereas in the case of 3-PM they reacted by H-abstraction as well as addition reaction. By following the yield of methylviologen radical cation formed by electron transfer reaction, it was estimated that approx. 50% of OH radicals react with 3-PM by H-atom abstraction at pH 6.8, giving reducing radicals, whereas at pH 3.2, where 3-PM is in the protonated form, the same is only about 10%. At pH 13, O-˙ radical anions were found to react exclusively by H-atom abstraction. Reaction of SO4-˙ radicals with 3-PCA was found to give a species identical to the one formed by one electron reduction of nicotinic acid at acidic pH values.  相似文献   

2.
Reactions of eaq -, H-atom and OH radicals with 3-pyridine methanol (3-PM) and 3-pyridine carboxaldehyde (3-PCA) have been studied at various pHs using pulse radiolysis technique. eaq - was found to be highly reactive with both 3-PM and 3-PCA (k approx. 1010 dm3 mol 1 s-1). Semi-reduced species formed in both cases were strongly reducing in nature. In the case of 3-PM, electron addition leads to the formation of pyridinyl radicals whereas in the case of 3-PCA, PyCHOH type radicals are formed. At pH 6.8, H-atom reaction with 3-PCA also gives semi-reduced species (PyCHOH), whereas at pH 1, H-atoms add to the ring. (CH3)2 ·COH radicals were found to transfer electron to 3-PCA at all the pH values tested and by making use of changes in the absorption spectra, pK a values of the semi-reduced species were determined to be 4.5 and 10.6. OH radicals were found to undergo addition reaction with 3-PCA, whereas in the case of 3-PM they reacted by H-abstraction as well as addition reaction. By following the yield of methylviologen radical cation formed by electron transfer reaction, it was estimated that approx. 50% of OH radicals react with 3-PM by H-atom abstraction at pH 6.8, giving reducing radicals, whereas at pH 3.2, where 3-PM is in the protonated form, the same is only about 10%. At pH 13, O radical anions were found to react exclusively by H-atom abstraction. Reaction of SO4 radicals with 3-PCA was found to give a species identical to the one formed by one electron reduction of nicotinic acid at acidic pH values.  相似文献   

3.
Thioacetamide (TA) is an organic compound having thioamide group similar to that in thiourea derivatives. Its reactions with eaq, H-atom and OH radicals were studied using the pulse radiolysis technique at various pHs and the kinetic and spectral characteristics of the transient species were determined. The initial adduct formed by the reaction of TA with OH radicals at pH 7 does not absorb light in the 300–600 nm region but reacts with the parent compound to give a transient species with an absorption maximum around 400 nm. At pH 0, the reaction of OH radicals with TA directly gives a similar transient species with absorption maximum at 400 nm. Transient species formed by H-atom reaction with TA and pH 0 has no absorption in the 300–600 nm region but at higher acidity a new transient species is formed which has absorption maximum at 400 nm. This transient absorption observed in the case of both OH and H atom reaction with TA is ascribed to the formation of a resonance stabilized radical similar to that obtained in the case of thiourea derivatives. The species produced by electron reaction viz. electron adduct was found to be a strong reductant and could reduce MV2+ with a high rate constant. H2S was produced as a stable product in the reaction of eaq and its G-value was determined to be about 0.8.  相似文献   

4.
Reactions of eaq, OH radicals and H atoms were studied with n-allylthiourea (NATU) using pulse radiolysis. Hydrated electrons reacted with NATU (k = 2.8×109 dm3 mol−1 s−1) giving a transient species which did not have any significant absorption above 300 nm. It was found to transfer electrons to methyl viologen. At pH 6.8, the reduction potential of NATU has been determined to be −0.527 V versus NHE. At pH 6.8, OH radicals were found to react with NATU, giving a transient species having absorption maxima at 400–410 nm and continuously increasing absorption below 290 nm. Absorption at 400–410 nm was found to increase with parent concentration, from which the equilibrium constant for dimer radical cation formation has been estimated to be 4.9×103 dm3 mol−1. H atoms were found to react with NATU with a rate constant of 5 × 109 dm3 mol−1 s−1, giving a transient species having an absorption maximum at 310 nm, which has been assigned to H-atom addition to the double bond in the allyl group. Acetoneketyl radicals reacted with NATU at acidic pH values and the species formed underwent reaction with parent NATU molecule. Reaction of Cl.−2 radicals (k = 4.6 × 109 dm3 mol−1 s−1) at pH 1 was found to give a transient species with λmax at 400 nm. At the same pH, reaction of OH radicals also gave transient species, having a similar spectrum, but the yield was lower. This showed that OH radicals react with NATU by two mechanisms, viz., one-electron oxidation, as well as addition to the allylic double bond. From the absorbance values at 410 nm, it has been estimated that around 38% of the OH radicals abstract H atoms and the remaining 62% of the OH radicals add to the allylic double bond.  相似文献   

5.
6.
Spectral, redox and kinetic properties of the transient species formed by the reaction of 2- mercaptopyridine (2-MPy) with oxidants such as OH, Br¯2 . ; N . 3 and Cl¯2 . radicals and reductants such as e¯aq, H-atoms and (CH3)2 . COH radicals have been studied by pulse radiolysis technique. Reaction of one-electron oxidants with 2-MPy at pH 11.5 led to the formation of 2-pyridyl thiyl radical. The reduction potential for the couple C5H4NS . /C5H4NS¯ was estimated to be 0.84 V vs NHE from the equilibrium studies with I¯2 . /2I¯ couple. At pH 6.8, the reaction of N . 3 radical with 2-MPy gave a cation radical derived from 2-MPy. At pH 6.8 and 11.5, OH radicals react with 2-MPy by addition pathway. Reaction of e¯aq with 2-MPy was found to give a reducing radical capable of transferring electron to methyl viologen. At acidic pH, the reaction of (CH3)2 . COH radicals and H-atoms with 2-MPy gave transient species identical to those produced by the reaction of oxidising radicals, namely, OH radicals, Cl¯2 . and Br¯2 . radicals.  相似文献   

7.
Reactions of one-electron reducing as well as oxidizing radicals with 4-mercaptopyridine (4-MPy) were studied in aqueous solutions at different pH values. One-electron oxidizing radicals such as N3 and Br2 , react with 4-MPy by electron transfer reaction at pH 11 to give 4-pyridylthiyl radical. The reduction potential for the couple 4-PyS /4-PyS was estimated to be 0.93V vs. NHE by equilibrium reaction with I2 /2I couple. At pH 6.8, where the compound is predominantly present in the thione form, the transient species formed is a cation radical. OH radicals react with 4-MPy by addition to the pyridine ring at pH 6.8 and 11. At pH 0, OH radicals as well as one-electron oxidants like Cl2 and Br2 radicals react with 4-MPy to produce the protonated form of 4-pyridylthiyl radical. At pH 6.8 and 11, eaq reaction with 4-MPy gave an initial adducts which reacted with the parent molecule to give dimer radicals. Acetone ketyl radicals were unable to reduce 4-MPy at neutral pH. Reducing radicals like H-atoms and acetone ketyl radicals reacted with 4-MPy at acidic pH by H-abstraction reaction to give the same species as produced by oxidizing radicals.  相似文献   

8.
9.
Rate constants for reactions of 2-pyridinol with one electron reductants, such ase aq and H atoms and one-electron oxidants, viz. OH, N3, Br 2 , C1 2 and O have been determined at different pH values using the pulse radiolysis technique. From the corrected absorption spectra of the product transient species, the extinction coefficients of these species at their respective absorption maxima have been determined. The kinetics of decay of these transients have been investigated. ThepK a values of transients formed bye aq and OH radical reactions have been estimated to be 7.6 and 3.5 respectively. Rate constants for electron transfer from semireduced 2-pyridinol to different electron acceptors have been determined.  相似文献   

10.
Reactions of the hydrated electron, H atoms, 2-propanol, and methanol radicals with the TiO2 nano-particles have been studied either directly or by competition kinetics. The radicals were produced by radiolysis of 2-propanol, t-butanol, or methanol aqueous solutions in acid pH's. The reactions involve electron injection to the conduction band. As expected, the t-butanol radical is inert towards TiO2 under our conditions, while the other reducing radicals react with TiO2. The reactivity decreases in the order: eaq>H>CH3COHCH3>CH2OH. Two TiO2 nanocrystallite sizes, with average diameters of 1.0 and 4.7 nm were compared. For equal concentrations (in terms of TiO2 molecules), the rate of electron injection shows relatively little dependency on particle size. The rates of interfacial electron transfer and transfer coefficient are also reported.  相似文献   

11.
首次用脉冲辐解时间分辨方法研究了etoposide(VP16)在水溶液中与N~3^.,(SCN)~2^.^-和e~a~q^-之间发生的单电子氧化还原反应,测定了VP16的阴离子自由基、脱质子中性自由基的特征吸收谱;测得VP16与e~a~q^-,N~3^.,(SCN)~2^.^-的绝对反应速率常数分别为2.7×10^9,3.2×10^9和2.5×10^8dm^3.mol^-^1.s^-^1。研究表明,水溶液中的VP16可为248nm激光光电离,光电离的瞬态产物为阳离子自由基及脱质子中性自由基,并且测定了其酸碱电离的pK值。测得SO~4^.^-自由基单电子氧化VP16的反应速率常数为2.8×10^9dm^3.mol^-^1.s^-^1。  相似文献   

12.
Pulse radiolysis of aqueous solutions was modeled by using 54 equations for the reaction of water radiolysis intermediates with carefully selected rate coefficients. Yields of products formed in the hydrated electron+solute and hydroxyl radical+solute reactions were calculated and compared with the measured yields in wide concentration range. These reactions are in competition with the reactions of the water radiolysis intermediates with each other and with H2O, H+ and H2O2. An empirical equation was developed for the calculation of scavenged product yields that can be used in cases when due to low rate coefficient, low solubility or very high absorbance, low solute concentrations are applied and a considerable fraction of the water radiolysis intermediates does not react with the solute.  相似文献   

13.
14.
15.
In the investigation of peroxyl radicals the pulse radiolysis technique can be used with some advantage to determine the rate of their unimolecular or bimolecular decay. If the identities of the products of the peroxyl radical reactions are known, pulse radiolysis often provides evidence for mechanistic details. The absorptions of the peroxyl radicals are neither very specific nor strong and optical detection is usually of little help. However, there are many peroxyl radical reactions which result in the formation of HO 2 . /H+O 2 . (pKa(HO 2 . )=4.7) or other acids. Thus in neutral and alkaline solutions such species can be monitored even quantitatively by the pulse conductometric method. Furthermore, O 2 . can be detected by its rapid reaction with tetranitromethane which yields the strongly absorbing nitroform anion. Since O 2 . is only a short-lived intermediate in neutral solutions, it can be distinguished from permanent acids which are often formed in peroxyl radical reactions. In alkaline solutions, where O 2 . is more stable, superoxide dismutase might be used with advantage to reduce its lifetime and to determine the yield of permanent acids. Some details of the fate of the peroxyl radicals derived from acetate, the -hydroxyethyl-peroxyl radicals, and the cyclopentylperoxyl radicals will be reviewed.  相似文献   

16.
Fast kinetic spectrophotometry was used to study the absorption spectra of short-living intermediates produced by reactions of RCN molecules with H, eaq and OH. The spectra were obtained on the microsecond time scale after an electron pulse from a Febetron 707 accelerator in aqueous solutions of the following compounds: hydrocyanic acid, acetonitrile, propionitrile, malononitrile and succinonitrile. It has been found that all intermediates absorb in the U.V. range (λ⩽300 nm) and disappear by fast bimolecular processes with decay rate constants of about 109dm3mol−1s−1. In the presence of an efficient scavenger for hydroxyl radicals, the same transient spectra were registered in acid and neutral solutions suggesting that the protonations of eaq adducts of these RCN molecules were complete within a submicrosecond time interval.  相似文献   

17.
18.
The transient absorption spectrum (max = 320, 400 and 550 nm) obtained on reaction of OH radicals with 4-(methylthio)benzoic acid is assigned to a solute radical cation with a positive charge on the benzene ring. The reaction with specific one-electron oxidants also produced similar spectrum and the oxidation potential for the formation of solute radical cation is estimated to be between 1.4 and 1.6 V vs NHE. The reaction of eaq - with the solute showed the formation of a transient absorption band at 320 nm and is assigned to solute radical anion with reduction potential more negative than-1.5 V.  相似文献   

19.
20.
Pulsed radiolysis, EPR, and optical spectroscopy were used to investigate the radiation-induced reduction of Hg 2 2+ ions in aqueous solutions. It was shown that the Hg 2 + ions that form as a result of the reduction reaction react rapidly with Hg 2 2+ with formation of Hg 4 3+ . Constants of formation and disappearance of these ions were determined. The process of disappearance of this species results in the formation of more complex clusters containing six or more mercury atoms. Further complication of the clusters affords colloidal metal particles.Institute of Physical Chemistry, Russian Academy of Sciences, Moscow 117915. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 9–12, January, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号