首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
An investigation of the properties of high-purity (>99 wt%) tantalum tungstates (Ta22W4O67, Ta, WO8, and Ta16W18O94) included determination of density (bulk and theoretical), refined lattice constants, maximum use temperatures, micro-hardness, heat capacity, thermal expansion (contraction) and diffusivity, calculated thermal conductivity, and electrical resistivity. Usable to ∼ 1700 K in air or inert atmospheres, these tantalum tungstates have theoretical densities of 7.3 to 8.5 g/cm3, are relatively soft (120 to 655 kg/mm2 hardnesses), and are electrical insulators (6× 103 to 2× 108Ω.cm resistivities). The distinguishing properties of the materials are their thermal expansion (average CTE values from + 0.6×10−8/K to −5.1× 10−6/K at 293 to 1273 K), thermal expansion hysteresis with minimal observable microcracking, and thermal diffusivity  相似文献   

2.
Glasses were discovered in the system K2O-Sb2O3b3 Raw materials used in the preparation of these glasses were potassium pyroantimonate, potassium hydroxide, potassium nitrate, antimony oxide, and antimony trisulfide. Details of the methods of preparing the glasses and the compositions investigated are given. A glass, prepared by melting a mixture of potassium pyroantimonate and antimony trisulfide in air, was investigated in some detail. It was found to have an average infrared transmission of 42% in the range 2 to 7 μ. The glass annealed at about 150°C. and softened at about 230°C. Its coefficient of linear thermal expansion, in the range 240° to 200°C., was 20 × 10−6 per °C. The glass had a specific gravity of 3.94, a modulus of elasticity of about 5 × 106lb. per sq. in., a Knoop hardness of about 135, and was highly resistant to attack by atmospheric moisture.  相似文献   

3.
Thermal expansion of the low-temperature form of BaB2O4 (β-BaB2O4) crystal has been measured along the principal crystallographic directions over a temperature range of 9° to 874°C by means of high-temperature X-ray powder diffraction. This crystal belongs to the trigonal system and exhibits strongly anisotropic thermal expansions. The expansion along the c axis is from 12.720 to 13.214 Å (1.2720 to 1.3214 nm), whereas it is from 12.531 to 12.578 Å (1.2531 to 1.2578 nm) along the a axis. The expansions are nonlinear. The coefficients A, B , and C in the expansion formula L t = L 0(1 + At + Bt 2+ Ct 3) are given as follows: a axis, A = 1.535 × 10−7, B = 6.047 × 10−9, C = -1.261 × 10−12; c axis, A = 3.256 × 10−5, B = 1.341 × 10−8, C = -1.954 × 10−12; and cell volume V, A = 3.107 × 10−5, B = 3.406 × 10−8, C = -1.197 × 10−11. Based on α t = (d L t /d t )/ L 0, the thermal expansion coefficients are also given as a function of temperature for the crystallographic axes a , c , and cell volume V.  相似文献   

4.
Crystals of SrY2O4 (space group Pnam ) were examined by high-temperature powder X-ray diffractometry to determine the changes in unit-cell dimensions with temperature. The individual cell dimensions linearly increased with increasing temperature up to 1473 K. The expansion coefficients (K−1) were 1.263(8) × 10−5 along the a- axis, 7.46(6) × 10−6 along the b- axis, and 9.93(10) × 10−6 along the c- axis. The coefficient of mean linear expansion was 1.001(8) × 10−5 K−1.  相似文献   

5.
Thermal expansion of Pb3O4 was investigated by high-temperature X-ray diffraction. The coefficient in the a 0 direction is 14.6×10−6/°C. Expansion in the c0 direction is 32% greater, with a coefficient of 19.3×10−6/°C. Coefficients of expansion are linear from 25° to 490°C and are comparable with those of tetragonal and orthorhombic PbO.  相似文献   

6.
The influence of co-additions of crystalline TiO2 and SiO2 fillers (10 wt% addition in total) to BaO–ZnO–B2O3–SiO2 glass on resultant properties was investigated from the viewpoint of applying the material to the barrier ribs of plasma display panels. The substitution of SiO2 for TiO2 reduced the dielectric constant significantly, while it maintained high optical reflectance and appropriate coefficient of thermal expansion (CTE) in the case when TiO2 alone was used. A 5–7.5 wt% SiO2 addition with 2.5–5 wt% TiO2 under the constraint of 10 wt% total fillers demonstrated an optical reflectance of about 55%, a CTE of about 8.3 × 10−6 K−1 (compatible with glass panels), and a dielectric constant of about 7.5, which are promising properties for the barrier rib application.  相似文献   

7.
The effects of heat treatment in Ar-O2 and H2-H2O atmospheres on the flexural strength of hot isostatically pressed Si3N4 were investigated. Increases in room-temperature strength, to values significantly above that of the aspolished material, were observed when the Si3N4 was exposed at 1400°C to (1) H2 with water vapor pressure ( P H2O) greater than 1 × 10−4 MPa or (2) Ar with oxygen partial pressure ( P O2) of between 7 × 10−6 and 1.5 × 10−5 MPa. However, the strength of the material was degraded when the P H2O in H2 was lower than 1 × 10−4 MPa, and essentially unaffected when the P O2 in Ar was higher than 1.5 × 10−5 MPa. We suggest that the observed strength increases are the result of strength-limiting surface flaws being healed by a Y2Si2O7 layer formed during exposure.  相似文献   

8.
Various types of crystalline ceramic fillers (TiO2, ZrO2, Al2O3, MgO, and cordierite) were added to BaO–ZnO–B2O3–SiO2 (BZBS) glass (5–20 wt%), and the resultant dielectric constant, coefficient of thermal expansion (CTE), and optical reflectance were investigated for the application of the composites to the barrier ribs in plasma display panels. All the investigated fillers were partially dissolved into the glass at the fabrication temperature (575°C), and the residual fillers were aligned along the boundaries of sintered glass frits. By considering all aspects of the properties, the addition of TiO2 fillers of about 10 wt% to BZBS glass was the most desirable of the types of fillers investigated. The addition of TiO2 filler (10 wt%) yielded 61% in optical reflectance, 8.3 × 10−6 K–1 in coefficient of thermal expansion, and 15.5 in dielectric constant, which were properties comparable with the currently used Pb-based barrier ribs.  相似文献   

9.
The thermal expansion of Y2SiO5 crystals has been measured for the principal crystallographic directions and two orthogonal directions in the (010) plane in the temperature range 25° to 200°C. This monoclinic crystal has strongly anisotropic expansions with coefficients which range from 0.6 × 10−6/°C for [100] to 11.4 × 10−6/°C for [001]. Third-order polynomials have been calculated from the expansion curves. Data for the β angle and cell volume as a function of temperature are also given. The thermal expansion of Y2SiO5 crystals is not affected by doping with 5% Tb.  相似文献   

10.
We measured the volume thermal expansion of Ti3SiC2 from 25° to 1400°C using high-temperature X-ray diffraction using a resistive heated cell. A piece of molybdenum foil with a 250 μm hole contained the sample material (Ti3SiC2+Pt). Thermal expansion of the polycrystalline sample was measured under a constant argon flow to prevent oxidation of Ti3SiC2 and the molybdenum heater. From the lattice parameters of platinum (internal standard), we calculated the temperature by using thermal expansion data published in the literature. The molar volume change of Ti3SiC2 as a function of temperature in °C is given by: V M (cm3/mol)=43.20 (2)+9.0 (5) × 10−4 T +1.8(4) × 10−7 T 2. The temperature variation of the volumetric thermal expansion coefficient is given by: αv (°C−1)=2.095 (1) × 10−5+7.700 (1) × 10−9 T . Furthermore, the results indicate that the thermal expansion anisotropy of Ti3SiC2 is quite mild in accordance with previous work.  相似文献   

11.
Crystals of β-Ca2SiO4 (space group P 121/ n 1) were examined by high-temperature powder X-ray diffractometry to determine the change in unit-cell dimensions with temperature up to 645°C. The temperature dependence of the principal expansion coefficients (αi) found from the matrix algebra analysis was as follows: α1= 20.492 × 10−6+ 16.490 × 10−9 ( T - 25)°C−1, α2= 7.494 × 10−6+ 5.168 × 10−9( T - 25)°C−1, α3=−0.842 × 10−6− 1.497 × 10−9( T - 25)°C−1. The expansion coefficient α1, nearly along [302] was approximately 3 times α2 along the b -axis. Very small contraction (α3) occurred nearly along [     01]. The volume changes upon martensitic transformations of β↔αL' were very small, and the strain accommodation would be almost complete. This is consistent with the thermoelasticity.  相似文献   

12.
Polycrystalline bulk samples of Ti3SiC2 were fabricated by reactively hot-pressing Ti, graphite, and SiC powders at 40 MPa and 1600°C for 4 h. This compound has remarkable properties. Its compressive strength, measured at room temperature, was 600 MPa, and dropped to 260 MPa at 1300°C in air. Although the room-temperature failure was brittle, the high-temperature load-displacement curve shows significant plastic behavior. The oxidation is parabolic and at 1000° and 1400°C the parabolic rate constants were, respectively, 2 × 10−8 and 2 × 10−5 kg2-m−4.s−1. The activation energy for oxidation is thus =300 kJ/mol. The room-temperature electrical conductivity is 4.5 × 106Ω−1.m−1, roughly twice that of pure Ti. The thermal expansion coefficient in the temperature range 25° to 1000°C, the room-temperature thermal conductivity, and the heat capacity are respectively, 10 × 10−6°C−1, 43 W/(m.K), and 588 J/(kgK). With a hardness of 4 GPa and a Young's modulus of 320 GPa, it is relatively soft, but reasonably stiff. Furthermore, Ti3SiC2 does not appear to be susceptible to thermal shock; quenching from 1400°C into water does not affect the postquench bend strength. As significantly, this compound is as readily machinable as graphite. Scanning electron microscopy of polished and fractured surfaces leaves little doubt as to its layered nature.  相似文献   

13.
Oxysulfide glasses were prepared in a wide range of compositions in the system LiBO2-LiBS2. Temperatures of glass transition ( Tg ), crystallization ( Tc ), and liquidus ( Tl ) were determined; a maximum of Tg was observed near the composition with 20 mol% LiBS2. The electrical conductivity at 500 K ranges from 5×10−4 to 5×10−3 S·cm−1 with the maxima in conductivity observed near the composition 55LiBO2·45LiBS2. This conductivity enhancement with a mixing of two components, which can be called the mixed-anion effect, is accompanied by a decrease in the degree of undercooling of glass expressed by the ratio ( Tl - Tg )/ Tl . The infrared and Raman spectra showed that the structural units with bridging oxygens B-O-B and nonbridging sulfurs B-S predominated rather than those with nonbridging oxygens B-O and bridging sulfurs B-S-B in these glasses.  相似文献   

14.
Glasses with compositions Li1.2M0.2Ge1.8(PO4)3 (M = Al, Ga, Y, Gd, Dy, and La) were prepared and converted to glass-ceramics by heat treatment. The effects of the M3+ ions on the conductivity of the glasses and glass-ceramics were studied. The main phase present in the glass-ceramics was the conductive phase LiGe2(PO4)3. Al3+ and Ga3+ ions entered the LiGe2(PO4)3 structure by replacing Ge4+ ions, but lanthanide ions did not. The glass-ceramics exhibited much higher conductivity than the glasses. With increased ionic radius of the M3+ ions, the conductivity remained almost unchanged at ∼3 × 10−12 S/cm for the glasses, but it decreased from 1.5 × 10−5 to 8 × 10−9 S/cm for the glass-ceramics at room temperature. The higher conductivity for Al3+- and Ga3+-containing glass-ceramics was suggested to result from the substitutions of Al3+ and Ga3+ ions for Ge4+ ions in the LiGe2(PO4)3 structure.  相似文献   

15.
An approach to select appropriate network modifiers to tailor the thermal and dielectric properties of zinc borosilicate (ZBS) glass has been explored to apply the glass composition to a dielectric layer of plasma display panels. Based on ionic field strength of the modifiers and the ionic polarizability of the corresponding crystalline form, Bi2O3 and Na2O modifiers have been selected to modify the thermal and dielectric properties of the glass toward the required properties for the application (440< T g<460°C, 7.5 × 10−6−6/K, and 10< K <15). Bi2O3 addition to ZBS could meet all the required properties simultaneously at a given addition range (8.5–14 mol%), while the addition of Na2O could not meet all the properties at a single composition range.  相似文献   

16.
The sintering of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler is terminated due to the crystallization of Al4B2O9 in the glass. The densification of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler using pressureless sintering was accomplished by lowering the sintering temperature of the composite. The sintering temperature was lowered by the addition of small amounts of alkali metal oxides to the MgO–B2O3–Al2O3 glass system. The resultant composite has a four-point bending strength of 280 MPa, a coefficient of thermal expansion (RT—200°C) of 4.4 × 10−6 K−1, a dielectric constant of 6.0 at 1 MHz, porosity of approximately 1%, and moisture resistance.  相似文献   

17.
Sintering, crystallization, microstructure, and thermal expansion of Li2O·Al2O3·4SiO2 glass-ceramics doped with B2O3, P2O5, or (B2O3+ P2O5) have been investigated. On heating the glass powder compacts, the glassy phase first crystallized into high-quartz s.s., which transformed into β-spodumene after the crystallization process was essentially complete. The effects of dopants on the crystallization of glass to high-quartz s.s. and the subsequent transformation of high-quartz s.s. to β-spodumene were discussed. The major densification occurred only in the early stage of sintering time due to the rapid crystallization. All dopants were found to promote the densification of the glass powders. The effect of doping on the densification can fairly well be explained by the crystallization tendency. All samples heated to 950°C exhibited a negative coefficient of thermal expansion ranging from about −4.7 × 10-6 to −0.1 × 10-6 K-1. Codoping of B2O3 and P2O5 resulted in the highest densification and an extremely low coefficient of thermal expansion.  相似文献   

18.
Parent glasses for fabricating glass–ceramics with nanometer-sized crystals usually have high viscosities, resulting in high processing temperatures. In this study, GeO2 was added to a transparent, near-zero thermal-expansion Li2O–Al2O3–SiO2 glass–ceramic to reduce the viscosity of the parent glass. The effects of this compositional modification on the viscosity and crystal-nucleation rate of the parent glasses, and on the crystal size, thermal expansion, and optical transparency of the resulting glass–ceramics were investigated. It was found that addition of GeO2 was useful in reducing the glass viscosity. Owing to the reduced nucleating rate with the increase in the GeO2 content, the nucleating times required for reaching the smallest crystal size, the lowest coefficient of thermal expansion, and the highest transparency were all increased. With increasing GeO2 content, the lowest coefficient of thermal expansion that can be reached for glass–ceramics increased (0.14–2.9 × 10−6 K−1). The highest transparency of the GeO2-containing glass–ceramics is almost as good as that of the GeO2-free glass–ceramic and is almost independent of GeO2 content when the crystal size is smaller than about 65 nm.  相似文献   

19.
Low-thermal-expansion ceramics having arbitrary thermal expansion coefficients were synthesized from homogeneous solid solutions in the system KZr2(PO4)3─KTi2(PO4)3 (KZP–KTP). Dense and strong ceramics were fabricated by sintering at 1100° to 1200°C with 2 wt% MgO. The thermal expansion coefficient increased from 0 to +3 × 10−6/°C with increasing x in KZr2 − xTix (PO4)3 (KZTP). In addition, a functionally gradient material with respect to thermal expansion was prepared by forming a series of KZTP solid solutions in a single ceramic body. By heating a pile of KZP and KTP ceramics in contact with each other, KZP and KTP bonded together to form a KZTP gradient solid solution near the interface.  相似文献   

20.
In this work, a bulk Nb4AlC3 ceramic was prepared by an in situ reaction/hot pressing method using Nb, Al, and C as the starting materials. The reaction path, microstructure, physical, and mechanical properties of Nb4AlC3 were systematically investigated. The thermal expansion coefficient was determined as 7.2 × 10−6 K−1 in the temperature range of 200°–1100°C. The thermal conductivity of Nb4AlC3 increased from 13.5 W·(m·K)−1 at room temperature to 21.2 W·(m·K)−1 at 1227°C, and the electrical conductivity decreased from 3.35 × 106 to 1.13 × 106Ω−1·m−1 in a temperature range of 5–300 K. Nb4AlC3 possessed a low hardness of 2.6 GPa, high flexural strength of 346 MPa, and high fracture toughness of 7.1 MPa·m1/2. Most significantly, Nb4AlC3 could retain high modulus and strength up to very high temperatures. The Young's modulus at 1580°C was 241 GPa (79% of that at room temperature), and the flexural strength could retain the ambient strength value without any degradation up to the maximum measured temperature of 1400°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号