首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of [Rh2(kappa2-acac)2(mu-CPh2)2(mu-PR3)] (PR3= PMe34, PMe2Ph 7, PEt38) with an equimolar amount of Me3SiX (X = Cl, Br, I) afforded the unsymmetrical complexes [Rh2X(kappa2-acac)(mu-CPh2)2(mu-PR3)]5, 9-12, which contain the phosphine in a semi-bridging coordination mode. From 4 and excess Me3SiCl, the tetranuclear complex [[Rh2Cl(mu-Cl)(mu-CPh2)2(mu-PMe3)]2]6 was obtained. In contrast, the reaction of 4 with an excess of Me3SiX (X = Br, I) yielded the dinuclear complexes [Rh2X2(mu-CPh2)2(mu-PMe3)]13, 14 in which, as shown by the X-ray crystal structure analysis of 14, the bridging phosphine is coordinated in a truly symmetrical bonding mode. While related compounds with PEt3 and PMe2Ph as bridging ligands were prepared on a similar route, the complex [Rh2Cl2(mu-CPh2)2(mu-PiPr3)]19 was obtained from the mixed-valence species [(PiPr3)Rh(mu-CPh2)2Rh(kappa2-acac)2]17 and HCl. The reaction of [Rh2(kappa2-acac)2(mu-CPh2)2(mu-SbiPr3)]3 with AsMe3 gave the related Rh(mu-AsMe3)Rh compound 21. With Me3SiCl, the acac ligands of 21 can be replaced stepwise by chloride to give [Rh2Cl(kappa2-acac)(mu-CPh2)2(mu-AsMe3)]23 and [[Rh2Cl(mu-Cl)(mu-CPh2)2(mu-AsMe3)]2]24, the latter being isomorphous to the phosphine-bridged dimer 6.  相似文献   

2.
Novel dinuclear rhodium complexes of the general composition [Rh2Cl2(mu-CRR')2(mu-SbiPr3)] (4-6) were prepared by thermolysis of the mononuclear precursors trans-[RhCl(=CRR')(SbiPr3)2] in excellent yield. The X-ray crystal structure analysis of 4 (R = R' = Ph) confirms the symmetrical bridging position of the stibane ligand. Related compounds [Rh2Cl2(mu-CPh2)(mu-CRR')(mu-SbiPr3)] (7, 8) with two different carbene units were obtained either from trans-[RhCl(=CPh2)(SbiPr3)2] (1) and RR'CN2 or by a conproportionation of 4 and 5 (R = R' = p-Tol) or 4 and 6 (R= Ph, R' = p-Tol), respectively. While CO reacts with 4 to give the polymeric product [[RhCl(CPh2)(CO)]n] (9), tert-butyl isocyanide replaces the bridging stibane and yields [Rh2Cl2(mu-CPh2)2(mu-CNtBu)] (10). The reaction of 4 with tertiary phosphanes PR3 leads to complete bridge cleavage and affords the mononuclear compounds trans-[RhCl(=CPh2)(PR3)2] (11-15). In contrast, treatment of 4 with SbMe3 and SbEt3 yields the related triply bridged complexes [Rh2Cl2(mu-CPh2)2(mu-SbR3)] (16, 17) by substitution of SbiPr3 for the smaller stibanes. The displacement of the chloro ligands in 4-6 and 10 by n5-cyclopentadienyl gives the dinuclear complexes [(n5-C5H5)2Rh2(mu-CRR')2] (18-20) and [(n5-C5H5)2Rh2(mu-CPh2)2(mu-CNtBu)] (21), of which 18 (R = R' = Ph) was characterized crystallographically.  相似文献   

3.
The reactions of [Rh(2)Cl(kappa(2)-acac)(mu-CPh(2))(2)(mu-SbiPr(3))] (3) and [Rh(2)(kappa(2)-acac)(2)(mu-CPh(2))(2)(mu-SbiPr(3))] (4) with PMe(3) lead to exchange of the bridging ligand and afford the novel PMe(3)-bridged counterparts 5 and 6, in which the phosphane occupies a semibridging (5) or a doubly bridging (6) position. In both cases, the bonding mode was confirmed crystallographically. Treatment of 6 with CO causes a shift of PMe(3) from a bridging to a terminal position and gives the unsymmetrical complex [(kappa(2)-acac)Rh(mu-CPh(2))(2)(mu-CO)Rh(PMe(3))(kappa(2)-acac)] (7). Similarly to 5 and 6, the related compounds 10 and 11 with one or two acac-f(3) ligands were prepared. While both PEt(3) and PnBu(3) react with 3 by exchange of the bridging stibane for phosphane to give compounds 12 and 13, the reactions of 4 with PMePh(2) and PnBu(3) afford the mixed-valent Rh(0)Rh(II) complexes [(PR(3))Rh(mu-CPh(2))(2)Rh(kappa(2)-acac)(2)] (17, 18) in high yields. In contrast, treatment of 4 with PEt(3) and PMe(2)Ph generates the phosphane-bridged compounds [Rh(2)(kappa(2)-acac)(2)(mu-CPh(2))(2)(mu-PR(3))] (14, 15) exclusively. Stirring a solution of 14 (R=Et) in benzene for 15 h at room temperature leads to complete conversion to the mixed-valent isomer 16. The reaction of 6 with an equimolar amount of CR(3)CO(2)H (R=F, H) or phenol in the molar ratio of 1:10 results in substitution of one acac by one trifluoracetate, acetate, or phenolate ligand without disturbing the [Rh(2)(mu-CPh(2))(2)(mu-PR(3))] core. From 6 and an excess of CR(3)CO(2)H, the symmetrical bis(trifluoracetato) and bis(acetate) derivatives [Rh(2)(kappa(2)-O(2)CCR(3))(2)(mu-CPh(2))(2)(mu-PMe(3))] (21, 22) were obtained.  相似文献   

4.
A series of carbenerhodium(I) complexes of the general composition [(eta5-C5H5)Rh(=CRR')(L)] (2a-2i) with R = R'= aryl and L = SbiPr3 or PR3 has been prepared from the square-planar precursors trans-[RhCl(=CRR')(L)2] and NaC5H5 in excellent yields. Reaction of the triisopropylsibane derivative 2a. which contains a rather labile Rh-Sb bond, with CO, PMe3, and CNR (R = Me, CH2Ph, tBu) leads to the displacement of the SbiPr3 ligand and affords the substitution products [(eta5-C5H5)Rh(=CPh2)(L)] (3-7). In contrast, treatment of the triisopropylphosphane compound 2c with CO and CNtBu leads to the cleavage of the Rh=CPh2 bond and gives besides [(eta5-C5H5)Rh(PiPr3)(L)] (10, 12) by metal-assisted C-C coupling diphenylketene Ph2C=C=O (11) or the corresponding imine Ph2C=C=NtBu (13). While the reaction of 2a, c with C2H4 yields [(eta5-C5H5)Rh(C2H4)(L)] (14, 15) and the trisubstituted olefin Ph2C=CHCH3 (16), treatment of 2a, c with RN3 leads to the cleavage of both the Rh-EiPr3 and Rh=CPh2 bonds and gives the chelate complexes [(eta5-C5H5)Rh(kappa2-RNNNNR)] (19, 20). The substitution products 3 (L=CO) and 4 (L= PMe3) react with an equimolar amount of sulfur or selenium by addition of the chalcogen to the Rh=CPh2 bond to generate the complexes [(eta5-C5H5)Rh(kappa2-ECPh2)(L)] (21-24) with thio- or selenobenzophenone as ligand. Similarly, treatment of 3 with CuCl affords the unusual 1:2 adduct [(eta5-C5H5)(CO)Rh(mu-CPh2)(CuCl)2] (25), which reacts with NaC5H5 to form [(eta5-C5H5)(CO)Rh(muCPh2)Cu(eta5-C5H5)] (26). The molecular structures of 3 and 22 have been determined by X-ray crystallography.  相似文献   

5.
The rhodium allenylidenes trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = Ph (1), p-Tol (2)] react with NaC(5)H(5) to give the half-sandwich type complexes [(eta(5)-C(5)H(5))Rh[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))] (3, 4). The reaction of 1 with the Grignard reagent CH(2)[double bond]CHMgBr affords the eta(3)-pentatrienyl compound [Rh(eta(3)-CH(2)CHC[double bond]C[double bond]CPh(2))(PiPr(3))(2)] (6), which in the presence of CO rearranges to the eta(1)-pentatrienyl derivative trans-[Rh[eta(1)-C(CH[double bond]CH(2))[double bond]C[double bond]CPh(2)](CO)(PiPr(3))(2)] (7). Treatment of 7 with acetic acid generates the vinylallene CH(2)[double bond]CH[bond]CH[double bond]=C=CPh(2) (8). Compounds 1 and 2 react with HCl to give the five-coordinate allenylrhodium(III) complexes [RhCl(2)[CH[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (10, 11). An unusual [C(3) + C(2) + P] coupling process takes place upon treatment of 1 with terminal alkynes HC[triple bond]CR', leading to the formation of the eta(3)-allylic compounds [RhCl[eta(3)-anti-CH(PiPr(3))C(R')C[double bond]C[double bond]CPh(2)](PiPr(3))] [R' = Ph (12), p-Tol (13), SiMe(3) (14)]. From 12 and RMgBr the corresponding phenyl and vinyl rhodium(I) derivatives 15 and 16 have been obtained. The previously unknown unsaturated ylide iPr(3)PCHC(Ph)[double bond]C[double bond]C[double bond]CPh(2) (17) was generated from 12 and CO. A [C(3) + P] coupling process occurs on treatment of the rhodium allenylidenes 1, 2, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(p-Anis)(2)](PiPr(3))(2)] (20) with either Cl(2) or PhICl(2), affording the ylide-rhodium(III) complexes [RhCl(3)[C(PiPr(3))C[double bond]C(R)R'](PiPr(3))] (21-23). The butatrienerhodium(I) compounds trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (28-31) were prepared from 1, 20, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = CF(3) (26), tBu (27)] and diazomethane; with the exception of 30 (R = CF(3), R' = Ph), they thermally rearrange to the isomers trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (32, 33, and syn/anti-34). The new 1,1-disubstituted butatriene H(2)C[double bond]C[double bond]C[double bond]C(tBu)Ph (35) was generated either from 31 or 34 and CO. The iodo derivatives trans-[RhI(eta(2)-H(2)C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] [R = Ph (38), p-Anis (39)] were obtained by an unusual route from 1 or 20 and CH(3)I in the presence of KI. While the hydrogenation of 1 and 26 leads to the allenerhodium(I) complexes trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (40, 41), the thermolysis of 1 and 20 produces the rhodium(I) hexapentaenes trans-[RhCl(eta(2)-R(2)C[double bond]C[double bond]C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] (44, 45) via C-C coupling. The molecular structures of 3, 7, 12, 21, and 28 have been determined by X-ray crystallography.  相似文献   

6.
The compound syn-[{Rh(mu-NH{p-tolyl})(CNtBu)(2)}(2)] (1) oxidatively adds C--Cl bonds of alkyl chlorides (RCl) and dichloromethane to each metal centre to give the cationic complexes syn-[{Rh(mu-NH{p-tolyl})(eta(1)-R)(CNtBu)(2)}(2)(mu-Cl)]Cl and anti-[{Rh(mu-NH{p-tolyl})Cl(CNtBu)(2)}(2)(mu-CH(2))]. Reaction of 1 with the chiral alkyl chloride (-)-(S)-ClCH(Me)CO(2)Me (R*Cl) gave [{Rh(mu-NH{p-tolyl})(eta(1)-R*)(CNtBu)(2)}(2)(mu-Cl)]Cl ([3]Cl) as an equimolecular mixture of the meso form (R,S)-[3]Cl-C(s) and one enantiomer of the chiral form [3]Cl-C(2). This reaction, which takes place in two steps, was modeled step-by-step by reacting the mixed-ligand complex syn-[(cod)Rh(mu-NH{p-tolyl})(2)Rh(CNtBu)(2)] (4) with R*Cl, as a replica of the first step, to give [(cod)Rh(mu-NH{p-tolyl})(2)RhCl(eta(1)-R*)(CNtBu)(2)] (5) with racemization of the chiral carbon. Further treatment of 5 with CNtBu to give the intermediate [(CNtBu)(2)Rh(mu-NH{p-tolyl})(2)RhCl(eta(1)-R*)(CNtBu)(2)], followed by reaction with R*Cl reproduced the regioselectivity of the second step to give (R,S)-[3]Cl-C(s) and [3]Cl-C(2) in a 1:1 molar ratio. Support for an S(N)2 type of reaction with inversion of the configuration in the second step was obtained from a similar sequence of reactions of 4 with ClCH(2)CO(2)Me first, then with CNtBu, and finally with R*Cl to give [(CNtBu)(2)(eta(1)-CH(2)R)Rh(mu-NH{p-tolyl})(2)(mu-Cl)Rh(eta(1)-R*)(CNtBu)(2)]Cl (R = CO(2)Me, [7]Cl) as a single enantiomer with the R configuration at the chiral carbon. The reactions of 1 with (+)-(S)-XCH(2)CH(CH(3))CH(2)CH(3) (X = Br, I) gave the related complexes [{Rh(mu-NH{p-tolyl})(eta(1)-CH(2)CH(CH(3))CH(2)CH(3))(CNtBu)(2)}(2)(mu-X)]X, probably by following an S(N)2 profile in both steps.  相似文献   

7.
The alkynyl(vinylidene)rhodium(I) complexes trans-[Rh(C[triple bond, length as m-dash]CR)(=C=CHR)(PiPr3)2] 2, 5, 6 react with CO by migratory insertion to give stereoselectively the butenynyl compounds trans-[Rh{eta1-(Z)-C(=CHR)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-7-9, of which (Z)-7 (R=Ph) and (Z)-8 (R=tBu) rearrange upon heating or UV irradiation to the (E) isomers. Similarly, trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CPh}(CO)(PiPr3)2] 12 and trans-[Rh{eta1-(Z)-C(=CHCO2Me)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-15, (Z)-16 have been prepared. At room temperature, the corresponding "non-substituted" derivative trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CH}(CO)(PiPr3)2] 18 is in equilibrium with the butatrienyl isomer trans-[Rh(eta1-CH=]C=C=CH2)(CO)(PiPr3)2] 19 that rearranges photochemically to the alkynyl complex trans-[Rh(C[triple bond, length as m-dash]CCH=CH2)(CO)(PiPr3)2] 20. Reactions of (Z)-7, (E)-7, (Z)-8 and (E)-8 with carboxylic acids R'CO2H (R'=CH3, CF3) yield either the butenyne (Z)- and/or (E)-RC[triple bond, length as m-dash]CCH=CHR or a mixture of the butenyne and the isomeric butatriene, the ratio of which depends on both R and R'. Treatment of 2 (R=Ph) with HCl at -40 degrees C affords five-coordinate [RhCl(C[triple bond, length as m-dash]CPh){(Z)-CH=CHPh}(PiPr3)2] 23, which at room temperature reacts by C-C coupling to give trans-[RhCl{eta2-(Z)-PhC[triple bond, length as m-dash]CCH=CHPh}(PiPr3)2](Z)-21. The related compound trans-[RhCl(eta2-HC[triple bond, length as m-dash]CCH=CH2)(PiPr3)2] 27, prepared from trans-[Rh(C[triple bond, length as m-dash]CH)(=C=CH2)(PiPr3)2] 17 and HCl, rearranges to the vinylvinylidene isomer trans-[RhCl(=C=CHCH=CH2)(PiPr3)2] 28. While stepwise reaction of 2with CF3CO2H yields, via alkynyl(vinyl)rhodium(III) intermediates (Z)-29 and (E)-29, the alkyne complexes trans-[Rh(kappa1-O2CCF3)(eta2-PhC[triple bond, length as m-dash]CCH=CHPh)(PiPr3)2](Z)-30 and (E)-30, from 2 and CH3CO2H the acetato derivative [Rh(kappa2-O2CCH3)(PiPr3)2] 33 and (Z)-PhC[triple bond, length as m-dash]CCH=]CHPh are obtained. From 6 (R=CO2Me) and HCl or HC[triple bond, length as m-dash]CCO2Me the chelate complexes [RhX(C[triple bond, length as m-dash]CCO2Me){kappa2(C,O)-CH=CHC(OMe)=O}(PiPr3)2] 34 (X=Cl) and 35 (X=C[triple bond, length as m-dash]CCO2Me) have been prepared. In contrast to the reactions of [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE)(CH=CHE)(PiPr3)2] 37(E=CO2Me) with chloride sources which give, via intramolecular C-C coupling, four-coordinate trans-[RhCl{eta2-(E)-EC[triple bond, length as m-dash]CCH=CHE}(PiPr3)2](E)-36, treatment of 37with HC[triple bond, length as m-dash]CE affords, via insertion of the alkyne into the rhodium-vinyl bond, six-coordinate [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE){eta1-(E,E)-C(=CHE)CH=CHE}(PiPr3)2] 38. The latter reacts with MgCl2 to yield trans-[RhCl{eta2-(E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE}(PiPr3)2] 39, which, in the presence of CO, generates the substituted hexadienyne (E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE 40.  相似文献   

8.
The course of methyl iodide oxidative addition to various nucleophilic complexes, [Ir2(mu-1,8-(NH)2naphth)(CO)2(PiPr3)2] (1), [IrRh(mu-1,8-(NH)2naphth)(CO)2(PiPr3)2] (2), and [Rh2(mu-1,8-(NH)2naphth)(CO)2(PR3)2] (R = iPr, 3; Ph, 4; p-tolyl, 5; Me, 6), has been investigated. The CH3I addition to complex 1 readily affords the diiridium(II) complex [Ir2(mu-1,8-(NH)2naphth)I(CH3)(CO)2(PiPr3)2] (7), which undergoes slow rearrangement to give a thermodynamically stable stereoisomer, 8. The reaction of the Ir-Rh complex 2 gives the ionic compound [IrRh(mu-1,8-(NH)2naphth)(CH3)(CO)2(PiPr3)2]I (10). The dirhodium compounds, 3-5, undergo one-center additions to yield acyl complexes of the formula (Rh2(mu-1,8-(NH)2naphth)I(COCH3)(CO)(PR3)2] (R = iPr, 12; Ph, 13; p-tolyl, 14). The structure of 12 has been determined by X-ray diffraction. Further reactions of these Rh(III)-Rh(I) acyl derivatives with CH3I are productive only for the p-tolylphosphine derivative, which affords the bis-acyl complex [Rh2(mu-1,8-(NH)2naphth)(CH3CO)2I2(P(p-tolyl)3)2] (15). The reaction of the PMe3 derivative, 6, allows the isolation of the bis-methyl complex [Rh2(mu-1,8-(NH)2naphth)(mu-I)(CH3)2(CO)2(PMe3)2]I (16a), which emanates from a double one-center addition. Upon reaction with methyl triflate, the starting materials, 1, 2, 3, and 6, give the isostructural cationic methyl complexes 9, 11, 17, and 18, respectively. The behavior of these cationic methyl compounds toward CH3I, CH3OSO2CF3, and tetrabutylamonium iodide is consistent with the role of these species as intermediates in the SN2 addition of CH3I. Compounds 18 and 17 react with an excess of methyl triflate to give [Rh2(mu-1,8-(NH)2naphth)(mu-OSO2CF3)(CH3)2(CO)2(PMe3)2][CF3SO3] (19) and [Rh2(mu-1,8-(NH)2naphth)(OSO2CF3)(COCH3)(CH3)(CO)(PiPr3)2][CF3SO3] (20), respectively. Upon treatment with acetonitrile, complexes 17 and 18 give the isostructural cationic acyl complexes [Rh2(mu-1,8-(NH)2naphth)(COCH3)(NCCH3)(CO)(PR3)2][CF3SO3] (R = iPr, 21; Me, 22). A kinetic study of the reaction leading to 21 shows that formation of these complexes involves a slow insertion step followed by the fast coordination of the acetonitrile. The variety of reactions found in this system can be rationalized in terms of three alternative reaction pathways, which are determined by the effectiveness of the interactions between the two metal centers of the dinuclear complex and by the steric constraints due to the phosphine ligands.  相似文献   

9.
The reaction of the in situ generated cyclooctene iridium(I) derivative trans-[IrCl(C8H14)(PiPr3)2] with benzene at 80 degrees C gave a mixture of the five-coordinate dihydrido and hydrido(phenyl) iridium(III) complexes [IrH2(Cl)(PiPr3)2] 2 and [IrH(C6H5)(Cl)(PiPr3)2] 3 in the ratio of about 1 : 2. The chloro- and fluoro-substituted arenes C6H5X (X = Cl, F), C6H4F2 and C6H4F(CH3) reacted also by C-H activation to afford the corresponding aryl(hydrido) iridium(III) derivatives [IrH(C6H4X)(Cl)(PiPr3)2] 7, 8, [IrH(C6H3F2)(Cl)(PiPr3)2] 9-11 and [IrH[C6H3F(CH3)](Cl)(PiPr3)2] 12, 13, respectively. The formation of isomeric mixtures had been detected by 1H, 13C, 19F and 31P NMR spectroscopy. Treatment of 3 and 7-13 with CO gave the octahedral carbonyl iridium(III) complexes [IrH(C6H3XX')(Cl)(CO)(PiPr3)2] 5, 14-20 without the elimination of the arene. The reactions of trans-[IrCl(C8H14)(PiPr3)2] with aryl ketones C6H5C(O)R (R = Me, Ph), aryl ketoximes C6H5C(NOH)R (R = Me, Ph) and benzaloxime C6H5C(NOH)H resulted in the formation of six-coordinate aryl(hydrido) iridium(III) compounds 21-25 with the aryl ligand coordinated in a bidentate kappa2-C,O or kappa2-C,N fashion. With C6H5C(O)NH2 as the substrate, the two isomers [IrH[kappa2-N,O-NHC(O)C6H5](Cl)(PiPr3)2] 26 and [IrH[kappa2-C,O-C6H4C(O)NH2](Cl)(PiPr3)2] 27 were prepared stepwise. Treatment of trans-[IrCl(C8H14)(PiPr3)2] with benzoic acid gave the benzoato(hydrido) complex [IrH[kappa2-O,O-O2CC6H5](Cl)(PiPr3)2] 29 which did not rearrange to the kappa2-C,O isomer.  相似文献   

10.
Cationic rhodium(I) complexes cis-[Rh(acetone)2(L)(L')]+ (2: L = L'=C8H14; 3: L=C8H14; L'=PiPr3; 4: L=L'=PiPr3), prepared from [RhCl(C8H14)2]2] and isolated as PF6 salts, catalyze the C-C coupling reaction of diphenyldiazomethane with ethene, propene, and styrene. In most cases, a mixture of isomeric olefins and cyclopropanes were obtained which are formally built up by one equivalent of RCH=CH2 (R = H, Me, Ph) and one equivalent of CPh2. The efficiency and selectivity of the catalyst depends significantly on the coordination sphere around the rhodium(I) center. Treatment of 4 with Ph2CN2 in the molar ratio of 1:1 and 1:2 gave the complexes trans-[Rh(PiPr3)2(acetone)(eta1-N2CPh2)]PF6 (8) and trans-[Rh(PiPr3)2(eta1-N2CPh2)2]PF6 (9), of which 8 was characterized by X-ray crystallography. Since 8 and 9 not only react with ethene but also catalyze the reaction of C2H4 and free Ph2CN2, they can be regarded as intermediates (possibly resting states) in the C-C coupling process. The lability of 8 and 9 is illustrated by the reactions with pyridine and NaX (X=Cl, Br, I, N3) which afford the mono(diphenyldiazomethane)rhodium(I) compounds trans-[Rh(PiPr3)2(py)(eta1-N2CPh2)]PF6 (10) and trans-[RhX(eta1-N2CPh2)(PiPr3)2] (11-14), respectively. The catalytic activity of the neutral complexes 11 - 14 is somewhat less than that of the cationic species 8, 9 and decreases in the order Cl > Br> I > N3.  相似文献   

11.
The complexes (*TeAr)Mo(CO)3(PiPr3)2 (Ar = phenyl, naphthyl; iPr = isopropyl) slowly eliminate PiPr3 at room temperature in a toluene solution to quantitatively form the dinuclear complexes [Mo(mu-TeAr)(CO)3(PiPr3)]2. The crystal structure of [Mo(mu-Te-naphthyl)(CO)3(PiPr3)]2 is reported and has a Mo-Mo distance of 3.2130 A. The enthalpy of dimerization has been measured and is used to estimate a Mo-Mo bond strength on the order of 30 kcal mol-1. Kinetic studies show the rate of formation of the dimeric chalcogen bridged complex is best fit by a rate law first order in (*TeAr)Mo(CO)3(PiPr3)2 and inhibited by added PiPr3. The reaction is proposed to occur by initial dissociation of a phosphine ligand and not by radical recombination of 2 mol of (*TeAr)Mo(CO)3(PiPr3)2. Reaction of (*TePh)Mo(CO)3(PiPr3)2, with L = pyridine (py) or CO, is rapid and quantitative at room temperature to form PhTeTePh and Mo(L)(CO)3(PiPr3)2, in keeping with thermochemical predictions. The rate of reaction of (*TeAr)W(CO)3(PiPr3)2 and CO is first-order in the metal complex and is proposed to proceed by the associative formation of the 19 e- radical complex (*TePh)W(CO)4(PiPr3)2 which extrudes a *TePh radical.  相似文献   

12.
An unprecedented, intramolecular metal-to-metal silyl ligand migration reaction has been discovered in a series of phosphido-bridged iron-platinum complexes and which may be triggered by an external nucleophile. Thus, reaction of solutions of [(OC)3-(R1/3Si)Fe(mu-PR2R3)Pt(1,5-COD) (1a R1 = OMe, R2 = 3 = Ph; 1b R1 = OMe, R2 = R3 = Cy; 1c R1 = Ph, R2 = R3 = Ph; 1d R1 = Ph, R2 = R3 = Cy; 1e R1 = Ph, R1 = H, R3 = Ph) in CH2Cl2 with CO rapidly afforded the corresponding complexes [(OC)4Fe(mu-PR2R3)Pt(SiR1/3)-(CO)] (2a-e) in which the silyl ligand has migrated from Fe to Pt, while two CO ligands have been ligated, one on each metal. When 1a or 1c was slowly treated with two equivalents of tBuNC at low temperature, quantitative displacement of the COD ligand was accompagnied by silyl migration from Fe to Pt and coordination of an isonitrile ligand to Fe and to Pt to give [(OC)3-(tBuNC)Fe(mu-PPh2)Pt[Si(OMe)3](CNtBu)] (3a) and [(OC)3(tBuNC)-Fe(mu-PPh2)Pt[SiPh3](CNtBu)] (3c). Reaction of 2a with one equivalent of tBuNC selectively led to substitution of the Pt-bound CO to give [(OC)4-Fe(mu-PCy2)Pt[Si(OMe)3](CNtBu)] (4b), which reacted with a second equivalent of tBuNC to give [(OC)4Fe(mu-PCy2)-Pt[Si(OMe)3](CNtBu)2] (5b) in which the metal-metal bond has been cleaved. Opening of the Fe-Pt bond was also observed upon reaction of 3a with tBuNC to give [(OC)3(tBuNC)-Fe(mu-PPh2)Pt[Si(OMe)3](CNtBu)2] (6). The silyl ligand migrates from Fe, in which it is trans to mu-PR2R3 in all the metal-metal-bonded complexes, to a position cis to the phosphido bridge on Pt. However, in 5a,b and 6 with no metal-metal bond, the Pt-bound silyl ligand is trans to the phosphido bridge. The intramolecular nature of the silyl migration, which may be formally viewed as a redox reaction, was established by a cross-over experiment consisting of the reaction of 1a and 1d with CO; this yielded exclusively 2a and 2d. The course of the silyl-migration reaction was found to depend a) on the steric properties of the -SiR1/3 ligand, and for a given mu-PR2R3 bridge (R2 = R3 = Ph), the migration rate decreases in the sequence Si(OMe)3> SiMe2Ph> SiMePh2>SiPh3; b) on the phosphido bridge and for a given silyl ligand (R1 = OMe), the migration rate decreases in the order mu-PPh2 > mu-PHCy; c) on the external nucleophile since reaction of 1c with two equivalents of P(OMe)3, P(OPh)3 or Ph2PCH2C(O)Ph led solely to displacement of the COD ligand with formation of 11a-c, respectively, whereas reaction with two equivalents of tBuNC gave the product of silyl migration 3c. Reaction of [(OC)3-[(MeO)3Si]Fe(mu-PPh2)Pt(PPh3)2] (7a) with tBuNC (even in slight excess) occurred stereoselectively with replacement of the PPh3 ligand trans to mu-PPh2, whereas reaction with CO led first to [(OC)3((MeO)3Si)Fe(mu-PPh2)Pt(CO)-(PPh3)] (8a), which then isomerized to the migration product [(OC)4Fe(mu-PPh2)Pt[Si(OMe)3](PPh3)] (9a). Most complexes were characterized by elemental analysis, IR and 1H, 31P, 13C, and 29Si NMR spectroscopy, and in five cases by X-ray diffraction.  相似文献   

13.
The complex [Rh(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (1) has been prepared by reaction of the precursor [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), 2,6-bis[4'(S)-isopropyloxazolin-2'-yl]pyridine (pybox), CO, and NaPF(6). Complex 1 reacts with monodentate phosphines to give the complexes [Rh(kappa(1)-N-pybox)(CO)(PR(3))(2)][PF(6)] (R(3) = MePh(2) (2), Me(2)Ph (3), (C(3)H(5))Ph(2) (4)), which show a previously unseen monodentate coordination of pybox. Complex 1 undergoes oxidative addition reactions with iodine and CH(3)I leading to the complexes [RhI(R)(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (R = I (5); R = CH(3) (6)). Furthermore, a new allenyl Rh(III)-pybox complex of formula [Rh(CH=C=CH(2))Cl(2)(kappa(3)-N,N,N-pybox)] (7) has been synthesized by a one-pot reaction from [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), pybox, and an equimolar amount of propargyl chloride.  相似文献   

14.
The reactions of the hydrido compounds [RuHCl(CO)(L)2][L = PiPr3 (1), PCy3 (2)] with HC(triple bond)CR (R = H, Ph, tBu) afforded by insertion of the alkyne into the Ru-H bond the corresponding vinyl complexes [RuCl(CHCHR)(CO)(L)2], 3-8, which upon protonation with HBF4 gave the cationic five-coordinated ruthenium carbenes [RuCl(CHCH2R)(CO)(L)2]BF4, 9-14. Subsequent reactions of the carbene complexes with PR3(R = Me, iPr) and CH3CN led either to deprotonation and re-generation of the vinyl compounds or to cleavage of the ruthenium-carbene bond and the formation of the six-coordinated complexes [RuCl(CO)(CH3CN)2(PiPr3)2]BF4, 17, and [RuH(CO)(CH3CN)2(PiPr3)2]X, 18a,b. The acetato derivative [RuH(2-O2CCH3)(CO)(PCy3)2], 19, also reacted with acetylene and phenylacetylene by insertion to yield the related vinyl complexes [Ru(CHCHR)(kappa2-O2CCH3)(CO)(PCy3)2], 20, 21, of which that with R = H was protonated with HBF4 to yield the corresponding cationic ruthenium carbene 22. With [RuHCl(H2)(PCy3)2], 25, as the starting material, the five-coordinated chloro(hydrido)ruthenium(II) compounds [RuHCl(PCy3)(dppf)], 26(dppf = [Fe(eta5-C5H4PPh2)2]), [RuHCl[Sb(CH2Ph)3](PCy3)2], 27, and [RuHCl(CH3CN)(PCy3)2], 30, were prepared. The reactions of 27 with HCCR (R = H, Ph) gave the hydrido(vinylidene) complexes [RuHCl(CCHR)(PCy3)2], 28 and 29, whereas treatment of 30 with HC(triple bond)CPh afforded the vinyl compound [RuCl(CHCHPh)(CH3CN)(PCy3)2], 31. The molecular structures of 11(R = tBu, L = PiPr3) and 26 were determined crystallographically.  相似文献   

15.
Paek JH  Song KH  Jung I  Kang SO  Ko J 《Inorganic chemistry》2007,46(7):2787-2796
Preparation of a triisocyanide ligand, 1,3,5-tris[(4-isocyano-3,5-diisoproyl-phenyl)ethynyl]benzene (5), is presented. Ligand 5 is obtained in three steps in 76% overall yield. Reaction of 5 with (eta5-Cp*)Rh(Cabs,s')(Cabs,s'= 1,2-S2C2B10H10-S,S') produced the rhodadithiolene adduct [[(eta5-Cp*)Rh(Cabs,s')(CNC6H2iPr2-2,6-CC-3)]3C6H3-1,3,5] (6). Ligand 5 reacts with Cr(CO)5(THF) to give the triisocyanide complex [[Cr(CO)5(CNC6H2iPr2-2,6-CC-3)]3C6H3-1,3,5] (8) and with [AuCl(SMe2)] to give the triisocyanide complex [[AuCl(CNC6H2iPr2-2,6-CC-3)]3C6H3-1,3,5] (9). As revealed by a single-crystal X-ray diffraction study, the C(9)-N(3)-C(61) angle of 5.9 degrees of trichromium complex 8 occurs in the plane of the bridge and the gold center has a slightly bent linear configuration with a Cl(1)-Au(1)-C(21) angle of 175.4(4) degrees . The rhenation and platination of 5 employing [Re(bpy)(CO)3(AN)]PF6 (AN= acetonitrile) and [(CwedgeNwedgeN)PtCl] ((HCwedgeNwedgeN)= 6-phenyl-2,2'-bipyridine) yielded the luminescent Re(I) and Pt(II) complexes. Full characterization includes structural study of complexes 2, 8, and 9.  相似文献   

16.
Reactions of [PdCl2(COD)] with 1 equiv. of the iminophosphorane-phosphine ligands Ph2PCH2P{=NP(=O)(OR)2}Ph2 (R=Et, Ph) lead to the novel Pd(II) derivatives cis-[PdCl2(kappa2-(P,N)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)] (R=Et, Ph). Pd-N bond cleavage readily takes place upon treatment of these species with a variety of two-electron donor ligands. By this way, complexes cis-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)(L)] (R=Et, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3; R=Ph, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3) have been synthesized in high yields. The addition of two equivalents of ligands to dichloromethane solutions of [PdCl2(COD)] results in the formation of complexes trans-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)2] (R=Et, Ph), which can be converted into the dicationic species [Pd(Ph2PCH2P{=NP(=O)(OR)2}Ph2)2][SbF6]2 (R=Et, Ph) by treatment with AgSbF6. Complex also reacts with CNtBu to afford trans-[Pd(kappa1(P)-Ph2PCH2P{=NP(=O)(OPh)2}Ph2)2(CNtBu)2][SbF6]2. The structures of and have been determined by single-crystal X-ray diffraction methods. In addition, the ability of these Pd(II) complexes to promote the catalytic cycloisomerization of (Z)-3-methylpent-2-en-4-yn-1-ol into 2,3-dimethylfuran has also been studied.  相似文献   

17.
Reaction of the proligand Ph2PN(SiMe3)2 (L1) with WCl6 gives the oligomeric phosphazene complex [WCl4(NPPh2)]n, 1 and subsequent reaction with PMe2Ph or NBu4Cl gives [WCl4(NPPh2)(PMe2Ph)] (2) or [WCl5(NPPh2)][NBu4] (3), respectively. DF calculations on [WCl5(NPPh2)][NBu4] show a W=N double bond (1.756 A) and a P-N bond distance of 1.701 A, which combined with the geometry about the P atom suggests, there is no P-N multiple bonding. Reaction of L1 with [ReOX3(PPh3)2] in MeCN (X = Cl or Br) gives [ReX2(NC(CH3)P(O)Ph2)(MeCN)(PPh3)](X = Cl, 4, X = Br, 5) which contains the new phosphorylketimido ligand. It is bound to the rhenium centre with a virtually linear Re-N-C arrangement (Re-N-C angle = 176.6 degrees, when X = Cl) and there is multiple bonding between Re and N (Re-N = 1.809(7) A when X = Cl). The proligand Ph2PNHNMe2(L2H) reacts with [(C5H5)TiCl3] to give [(C5H5)TiCl2(Me2NNPPh2)] (6). An X-ray crystal structure of the complex shows the ligand (L2) is bound by both nitrogen atoms. Reaction of the proligands Ph2PNHNR2[R2 = Me2 (L2H), -(CH2CH2)2NCH3 (L3H), (CH2CH2)2CH2 (L4H)] with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave [RuCl2(eta6-p-MeC6H4iPr)L] {L = L2H (7), L3H (8), L4H (9)}. The X-ray crystal structures of 7-9 confirmed that the phosphinohydrazine ligand is neutral and bound via the phosphorus only. Reaction of complexes 7-9 with AgBF4 resulted in chloride ion abstraction and the formation of the cationic species [RuCl(6-p-MeC6H4iPr)(L)]+ BF4- {(L = L2H (10), L3H (11), L4H (12)}. Finally, reaction of complex 6 with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave the binuclear species [(eta6-p-MeC6H4iPr)Cl2Ru(mu2,eta3-Ph2PNNMe2)TiCl2(C5H5)], 13.  相似文献   

18.
The new diphosphine ligands Ph(2)PC(6)H(4)C(O)X(CH(2))(2)OC(O)C(6)H(4)PPh(2) (1: X=NH; 2: X=NPh; 3: X=O) and Ph(2)PC(6)H(4)C(O)O(CH(2))(2)O(CH(2))(2)OC(O)C(6)H(4)PPh(2) (5) as well as the monophosphine ligand Ph(2)PC(6)H(4)C(O)X(CH(2))(2)OH (4) have been prepared from 2-diphenylphosphinobenzoic acid and the corresponding amino alcohols or diols. Coordination of the diphosphine ligands to rhodium, iridium, and platinum resulted in the formation of the square-planar complexes [(Pbond;P)Rh(CO)Cl] (6: Pbond;P=1; 7: Pbond;P=2; 8: Pbond;P=3), [(Pbond;P)Rh(CO)Cl](2) (9: Pbond;P=5), [(P-P)Ir(cod)Cl] (10: Pbond;P=1; 11: Pbond;P=2; 12: Pbond;P=3), [(Pbond;P)Ir(CO)Cl] (13: Pbond;P=1; 14: Pbond;P=2; 15: Pbond;P=3), and [(Pbond;P)PtI(2)] (18: Pbond;P=2). In all complexes, the diphosphine ligands are trans coordinated to the metal center, thanks to the large spacer groups, which allow the two phosphorus atoms to occupy opposite positions in the square-planar coordination geometry. The trans coordination is demonstrated unambiguously by the single-crystal X-ray structure analysis of complex 18. In the case of the diphosphine ligand 5, the spacer group is so large that dinuclear complexes with ligand 5 in bridging positions are formed, maintaining the trans coordination of the P atoms on each metal center, as shown by the crystal structure analysis of 9. The monophosphine ligand 4 reacts with [[Ir(cod)Cl](2)] (cod=cyclooctadiene) to give the simple derivative [(4)Ir(cod)Cl] (16) which is converted into the carbonyl complex [(4)Ir(CO)(2)Cl] (17) with carbon monoxide. The crystal structure analysis of 16 also reveals a square-planar coordination geometry in which the phosphine ligand occupies a position cis with respect to the chloro ligand. The diphosphine ligands 1, 2, 3, and 5 have been tested as cocatalysts in combination with the catalyst precursors [[Rh(CO)(2)Cl](2)] and [[Ir(cod)Cl](2)] or [H(2)IrCl(6)] for the carbonylation of methanol at 170 degrees C and 22 bar CO. The best results (TON 800 after 15 min) are obtained for the combination 2/[[Rh(CO)(2)Cl](2)]. After the catalytic reaction, complex 7 is identified in the reaction mixture and can be isolated; it is active for further runs without loss of catalytic activity.  相似文献   

19.
The first series of Rh(I) distibine complexes with organometallic co-ligands is described, including the five-coordinate [Rh(cod)(distibine)Cl], the 16-electron planar cations [Rh(cod)(distibine)]BF4 and [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 and the five-coordinate [Rh(CO)(distibine)2][Rh(CO)2Cl2] (distibine=R2Sb(CH2)3SbR2, R=Ph or Me, and o-C6H4(CH2SbMe2)2). The corresponding Ir(I) species [Ir(cod)(distibine)]BF4 and [Ir{Ph2Sb(CH2)3SbPh2}2]BF4 have also been prepared. The complexes have been characterised by 1H and 13C{1H} NMR and IR spectroscopy, electrospray mass spectrometry and microanalysis. The crystal structure of the anion exchanged [Rh(CO){Ph2Sb(CH2)3SbPh2}2]PF(6).3/4CH2Cl2 is also described. The methyl-substituted distibine complexes are less stable than the complexes of Ph2Sb(CH2)3SbPh2, with C-Sb fission occurring in some of the complexes of the former. The salts [Rh(CO){Ph2Sb(CH2)3SbPh2}2]PF6 and [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 undergo oxidative addition with Br2 to give the known [RhBr2{Ph2Sb(CH2)3SbPh2}2]+, while using HCl gives the same hydride complex from both precursors, which is tentatively assigned as [RhHCl2{Ph2Sb(CH2)3SbPh2}]. An unexpected further Rh(III) product from this reaction, trans-[RhCl2{Ph2Sb(CH2)3SbPh2}{PhClSb(CH2)3SbClPh}]Cl, was identified by a crystal structure analysis and represents the first structurally characterised example of a chlorostibine coordinated to a metal. [Rh{Ph2Sb(CH2)3SbPh2}2]BF4 reacts with CO to give [Rh(CO){Ph2Sb(CH2)3SbPh2}2]BF4 initially, and upon further exposure this species undergoes further reversible carbonylation to give a cis-dicarbonyl species thought to be [Rh(CO)2{Ph2Sb(CH2)3SbPh2}{kappa1Sb-Ph2Sb(CH2)3SbPh2}]BF4 which converts back to the monocarbonyl complex when the CO atmosphere is replaced with N2.  相似文献   

20.
The tridentate bis-phosphinimine ligands O(1,2-C(6)H(4)N=PPh(3))(2)1, HN(1,2-C(2)H(4)N=PR(3))(2) (R = Ph 2, iPr 3), MeN(1,2-C(2)H(4)N=PPh(3))(2)4 and HN(1,2-C(6)H(4)N=PPh(3))(2)5 were prepared. Employing these ligands, monometallic Pd and Ni complexes O(1,2-C(6)H(4)N=PPh(3))(2)PdCl(2)6, RN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][Cl] (R = H 7, Me 8), [HN(1,2-CH(2)CH(2)N=PiPr(3))(2)PdCl][Cl] 9, [MeN(1,2-CH(2)CH(2)N=PPh(3))(2)PdCl][PF(6)] 10, [HN(1,2-CH(2)CH(2)N=PPh(3))(2)NiCl(2)] 11, [HN(1,2-CH(2)CH(2)N=PR(3))(2)NiCl][X] (X = Cl, R = iPr 12, X = PF(6), R = Ph 13, iPr 14), and [HN(1,2-C(6)H(4)N=PPh(3))(2)Ni(MeCN)(2)][BF(4)]Cl 15 were prepared and characterized. While the ether-bis-phosphinimine ligand 1 acts in a bidentate fashion to Pd, the amine-bis-phosphinimine ligands 2-5 act in a tridentate fashion, yielding monometallic complexes of varying geometries. In contrast, initial reaction of the amine-bis-phosphinimine ligands with base followed by treatment with NiCl(2)(DME), afforded the amide-bridged bimetallic complexes N(1,2-CH(2)CH(2)N=PR(3))(2)Ni(2)Cl(3) (R = Ph 16, iPr 17) and N(1,2-C(6)H(4)N=PPh(3))(2)Ni(2)Cl(3)18. The precise nature of a number of these complexes were crystallographically characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号