首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pd-zirconia-based monolithic catalysts were prepared with various commercial zirconia raw materials and a natural magnesium silicate binder, sepiolite, for the selective catalytic reduction (SCR) of NO with CH4 in oxygen excess. The different textural properties, metastable tetragonal zirconia phase stability, surface acidity, Pd dispersion and catalytic properties of these monoliths were compared to select the most suitable structured catalyst for NOx control in natural gas-fired power plants. The influence of operating temperature in the two reactions, NO reduction and CH4 combustion, with the monolithic catalysts was determined. A 0.4 wt.% Pd-zirconia catalyst, manufactured from a sulphated zirconium hydroxide raw material, was selected as the most appropriate in the reaction under study, reaching a maximum NO conversion at 400 °C.  相似文献   

2.
The effect of SO2 on the NOx storage capacity and oxidation and reduction activities of a model Pt/Rh/BaO/Al2O3 NOx storage catalyst was investigated. Addition of 2.5, 7.5 or 25 vol. ppm SO2 to a synthetic lean exhaust gas caused deactivation of the NOx storage function, the oxidation activity and the reduction activity of the catalyst. The degree of deactivation of the NOx storage capacity was found to be proportional to the total SO2 dose that the catalyst had been exposed to. SO2 was found to be accumulated in the catalyst as sulphate.  相似文献   

3.
This work describes the development and use of carbon–ceramic cellular monoliths as catalyst supports for the low-temperature selective catalytic reduction (SCR) of NOx with ammonia. Manganese oxide was selected as catalyst and deposited over the support, which was obtained by coating the cellular ceramics with a polymeric film. The coated material was cured, carbonised and activated prior to impregnation of the active phase. The produced catalysts showed a good NOx reduction (in the range 34–73%) at 150°C for a space velocity of 4000 h−1. Gasification of the support was negligible at the mentioned conditions.  相似文献   

4.
This paper shows the behavior of a Pt/Ba/γ–Al2O3 automotive catalyst in a fixed bed reactor during cyclic operation at lean and rich gas phase conditions at short (seconds) and long (hours) cycling times at different temperatures. Reactor exit gas phase concentrations have been measured and catalyst properties have been determined before and after selective cycling experiments. The experimental results indicate that: (i) Upon 9 h lean and 15 h rich cycling, the NO oxidation efficiency of the catalyst decreases with time while incomplete regeneration is seen, even after 15 h rich exposure with H2. The cyclic steady state is reached after 3 lean/rich cycles, at which only 60% of the available barium is involved in the NOx storage/reduction. (ii) The BET surface area, pore volume, and Pt dispersion decrease by approximately 40%, which may be a result of masking of Pt sites or blocking of pores of the barium clusters as BaCO3 becomes Ba(NO3)2. Experiments with catalyst pellet sizes of 180 and 280 μm along with XPS measurements show that blocking of catalyst pellet pores is not taking place. (iii) When applying lean/rich cycling in the order of seconds, it appears that catalyst history and lean/rich timing affect the number of cycles required to arrive at a closed N balance. XRD results after lean exposure confirm the formation of barium nitrate in the bulk of the barium cluster.  相似文献   

5.
A catalytic deSoot–deNOx system, comprising Pt and Ce fuel additives, a Pt-impregnated wall-flow monolith soot filter and a vanadia-type monolithic NH3-SCR catalyst, was tested with a two-cylinder DI diesel engine. The soot removal efficiency of the filter was 98–99 mass% with a balance temperature (stationary pressure drop) of 315 °C at an engine load of 55%. The NOx conversion ranged from 40 to 73%, at a NH3/NOx molar ratio of 0.9. Both systems were measured at a GHSV of 52 000 l/(l h). The maximum NOx conversion was obtained at 400 °C. The reason for the moderate deNOx performance is discussed. No deactivation was observed after 380 h time on stream. The NOx emission at high engine loads is around 15% lower than that of engines running without fuel additives.  相似文献   

6.
Transient behaviour of catalytic monolith converter with NOx storage is studied under conditions typical for automobiles with lean-burn engines (i.e., diesel and advanced gasoline ones). Periodical alternation of inlet concentrations is applied—NOx are adsorbed on the catalyst surface during a long reductant-lean phase (2–3 min) and then reduced to N2 within a short reductant-rich phase (2–6 s). Samples of industrial NOx storage and reduction catalyst of NM/Ba/CeO2/γ-Al2O3 type (NM = noble metal), washcoated on 400 cpsi cordierite substrate, are used in the study. Effects of the rich-phase length and composition on the overall NOx conversions are examined experimentally. Reduction of NOx by CO, H2 and unburned hydrocarbons (represented by C3H6) in the presence of CO2 and H2O is considered.

Effective, spatially 1D, heterogeneous mathematical model of catalytic monolith with NOx and oxygen storage capacity is described. The minimum set of experiments needed for the evaluation of relevant reaction kinetic parameters is discussed: (i) CO, H2 and HC oxidation light-off under both lean and rich conditions, including inhibition effects, (ii) NO/NO2 transformation, (iii) NOx storage, including temperature dependence of effective NOx storage capacity, (iv) water gas shift and steam reforming under rich conditions, i.e., in situ production of hydrogen, (v) oxygen storage and reduction, including temperature dependence of effective oxygen storage capacity, and (vi) NOx desorption and reduction under rich conditions. The experimental data are compared with the simulation results.  相似文献   


7.
A series of Pt and Pt,Cu supported catalysts were prepared by wet impregnation of Mg–Al supports obtained from hydrotalcite-type (HT) precursor compounds. These novel NOx storage-reduction (NOxSR) catalysts show improved performances in NOx storage than Pt,Ba/alumina NOxSR catalysts at reaction temperatures lower than 200 °C. These catalysts show also improved resistance to deactivation by SO2. The effect is attributed to the formation of well dispersed Mg(Al)O particles which show good NOx storage properties. The promoted low temperature activity is explained by the lower basicity of the Mg(Al)O mixed oxide in comparison to BaO, which induces on one hand a lower inhibition on Pt activity (NO to NO2 oxidation and/or hydrocarbon oxidation) due to electronic effect, and on the other hand a lower thermal stability of the stored NOx. The presence of Cu slightly inhibits activity at low temperature, although improves activity and resistance to deactivation at 300 °C. On these catalysts FT-IR characterization evidences the formation of a Pt–Cu alloy after reduction.  相似文献   

8.
We have investigated the regeneration of a nitrated or sulphated model Pt/Ba-based NOx trap catalyst using different reductants. H2 was found to be more effective at regenerating the NOx storage activity especially at lower temperature, but more importantly over the entire temperature window after catalyst ageing. When the model NOx storage catalyst is sulphated in SO2 under lean conditions at 650 °C almost complete deactivation can be seen. Complete regeneration was not achieved, even under rich conditions at 800 °C in 10% H2/He. Barium sulphate formed after the high temperature ageing was partly converted to barium sulphide on reduction. However, if the H2 reduced sample was exposed to a rich condition in a gas mixture containing CO2 at 650 °C, the storage activity can be recovered. Under these rich conditions the S2− species becomes less stable than the CO32−, which is active for storing NOx. Samples which were lean aged in air containing 60 ppm SO2 at <600 °C, after regeneration at λ=0.95 at 650 °C, have a similar activity window to a fresh catalyst. It is, therefore, important that CO2 is present during the rich regenerations of the sulphated model samples (as of course it would be under real conditions), as suppression of carbonate formation can lead to sulphide formation which is inactive for NOx storage.  相似文献   

9.
A model of NOx selective reduction by hydrocarbon (HC) was developed, which takes into account the adsorption and desorption of HC. The model was applied for predicting the performance of a De–NOx catalytic reactor, working under transient conditions such as a legislative driving cycle. Diesel fuel was used as a supplemental reductant.

The behavior of HC and NOx reactions and HC adsorption and desorption has been simulated successfully by our numerical approach under the transient conditions of the simulated Japanese 10–15 driving cycle. Our model is expected to optimize the design of selective diesel NOx reduction systems using a diesel fuel as a supplemental reductant.  相似文献   


10.
The kinetic model of the reduction of NO to N2 with decane, developed based on the experimental data over Fe-MFI catalyst, has been applied for the oxidation of NO to NO2 and reduction of NO2 to N2 with decane over Cu-MFI catalyst. The model fits well the experimental data of oxidation of NO as well as reduction of NO to N2. Remarkable differences have been found in performance of Cu-MFI and Fe-MFI catalysts. While Fe-MFI is more active in oxidation of NO to NO2, Cu-MFI exhibits much higher activity in the reduction of NO with decane. The kinetic model indicates that the significantly lower activity of Fe-MFI in comparison with Cu-MFI in transformation of NOx to nitrogen is due to higher rate of transformation of NO2, formed in the first step by the oxidation of NO, back to NO instead to molecular nitrogen.  相似文献   

11.
This study deals with the development of a laboratory bench for the practical evaluation of catalysts that are useful for the direct conversion of NOx and soot in the exhaust of diesel engines. The employed model exhaust is generated by using a diffusion burner with additionally dosing some gaseous components to the burner gas to obtain a realistic feed composition. The produced soot is extensively characterized by employing thermogravimetry, transmission electron microscopy, N2 physisorption and temperature programmed techniques. The results of the different characterization methods show that the present soot is suitable for the intended catalytic investigations. The simultaneous conversion of NOx and soot is examined like in practice, i.e. the soot is separated from the tail gas by a diesel particulate filter (DPF) that is coated with the catalyst. The deposited soot is then catalytically converted by NOx and O2 to form N2 and CO2. The conversions of NOx and soot are measured by exclusively applying gas analysers, whereby a special experimental procedure is developed to determine the soot removal. Hence, additional soot related analytics are not required. To show the suitability of the constructed bench a Pt/Fe2O3/β-zeolite sample is taken as test catalyst that is reported to be very active in NOx/soot reaction. The measurements performed with and without catalyst clearly show the effect of the used sample in simultaneous NOx/soot conversion. We therefore consider the constructed laboratory bench to be a useful tool for testing and ranking catalytic materials.  相似文献   

12.
This study provides insight into the effect of Pt dispersion on the overall rate and product distribution during NOx storage and reduction. The storage and reduction performance of Pt/BaO/A2O3 monoliths with varied Pt dispersion (3%, 8%, and 50%) and fixed Pt (2.48 wt.%) and BaO (13.0 wt.%) loadings is reported. At low temperature (<200 °C), the differences in storage and reduction activity were the largest between the three catalysts. The amount of NOx stored increased with increased dispersion, as did the amount of stored NOx that was reduced. These trends are attributed to larger Pt surface area and Pt–BaO interfacial perimeter, the latter of which enhances the spillover of surface species between the precious metal and storage components. At high temperature (370 °C), the stored NOx was almost completely regenerated for the three catalysts. However, the regeneration of the 3% dispersion catalyst was much slower, suggesting a rate limitation involving the reverse spillover of stored NOx to Pt and/or of adsorbed hydrogen from Pt to BaO. The results indicate that the catalyst dispersion and operating conditions may be tuned to achieve the desired ammonia selectivity. For the aerobic regeneration feed, the most (net) NH3 was generated by the 50% dispersion catalyst at the lowest temperature (125 °C), by the 3% dispersion catalyst at the highest temperature (340 °C), and by the 8% dispersion catalyst at the intermediate temperatures (170–290 °C). Similar trends were observed for the net production of NH3 with an anaerobic regeneration feed. A phenomenological picture is proposed that describes the effects of Pt dispersion consistent with the established spatio-temporal behavior of the lean NOx trap.  相似文献   

13.
Potassium-loaded lanthana is a promising catalyst to be used for the simultaneous abatement of soot and NOx, which are the main diesel-exhaust pollutants. With potassium loadings between 4.5 and 10 wt.% and calcination temperatures between 400 and 700 °C, this catalyst mixed with soot gave maximum combustion rates between 350 and 400 °C in TPO experiments, showing a good hydrothermal stability. There was no difference in activity when it was either mixed by grinding in an agate mortar or mixed by shaking in a sample bottle (tight and loose conditions, respectively). Moreover, when the K-loaded La2O3 is used as washcoat for a cordierite monolith, there were found no significant differences in the catalytic behaviour of the system, which implies its potentiality for practical purposes.

The influence of poisons as water and SO2 was investigated. While water does not affect the soot combustion activity, SO2 slightly shift the TPO peak to higher temperature. Surface basicity, which is a key factor, was analysed by measuring the interactions of the catalytic surface with CO2 using the high frequency CO2 pulses technique, which proved to be very sensitive, detecting minor changes by modifications in the dynamics of the CO2 adsorption–desorption process. Water diminishes the interaction with CO2, probably as a consequence of an adsorption competition. The SO2 treated catalyst is equilibrated with the CO2 atmosphere more rapidly if compared with the untreated one, also showing a lower interaction. The lower the interaction with the CO2, the lower the activity.

Differential scanning calorimetric (DSC) results indicate that the soot combustion reaction coexists with the thermal decomposition of hydroxide and carbonate species, occurring in the same temperature range (350–460 °C). The presence of potassium increases surface basicity shifting the endothermic decomposition signal to higher temperatures.

We also found that NO2 strongly interacts with both La2O3 and K/La2O3 solids, probably through the formation of monodentate nitrate species which are stable under He atmosphere until 490 °C. These nitrate species further react with the solid to form bulk nitrate compounds. The addition of Cobalt decreases the nitrates stability and catalyses the NOx to N2 reduction under a reducing atmosphere, which is a necessary step for a working NOx catalytic trap. Preliminary studies performed in this work demonstrated the feasibility of using these catalysts to simultaneously remove NOx and soot particles from diesel exhausts. The nitrate formation is still observed during the catalytic combustion of soot in the presence of NOx, making our K/La2O3 a very interesting system for practical applications in simultaneous soot combustion and NOx storage in diesel exhausts.  相似文献   


14.
NOx adsorption/desorption capacities of barium aluminates and BaSnO3 were measured under representative exhaust gas mixture at temperatures below 550°C and compared to those of bulk BaO. The capacities are high and the test of sorption–desorption is reproducible on barium aluminate and BaSnO3, while this is not the case on BaO. The difference is due to the electronic environment of barium oxide. If BaO is not engaged in a chemical bond, progressive formation of high stability carbonates is observed. This is not the case with barium aluminate and BaSnO3, where carbonation does not take place because the competition between nitrate and carbonate formation is in favour of the nitrate due to its chemical nature. An N-bounded nitrate, with IR frequencies at 1360 and 1415 cm−1, is formed on barium aluminate and BaSnO3 and not on bulk BaO.  相似文献   

15.
16.
A series of SiO2-supported MoO3, V2O5, and Pt catalysts were prepared for the study of model soot oxidation with simulated diesel exhaust gas. Composite samples of Pt with the metal oxides demonstrated higher oxidation activities than the single-component SiO2-supported MoO3, V2O5 or Pt catalysts in the absence of SO2 in the reactant gas. Based on the effects of NO2 on carbon oxidation, a synergistic reaction mechanism was suggested to explain the effects of combining Pt with the oxides: Pt catalyzes the oxidation of NO with gas phase O2 to NO2, while MoO3 and V2O5 catalyze the oxidation of carbon with NO2. Finally, the effects of SO2 on the carbon oxidation reaction were examined and discussed.  相似文献   

17.
Catalytic performances of ZSM-5 based catalysts containing indium or palladium were examined for NO reduction with CH4 and NOx chemisorption. The amounts of NOx chemisorbed on In/H-ZSM-5 were well proportional to the catalytic activities for NOx reduction. Pd/H-ZSM-5, on the other hand, hardly chemisorbed NO2, while the catalytic activity for NO2 reduction with CH4 is very high. Furthermore, Pd loaded on SiO2 showed comparably high catalytic activity for NO2 reduction with CH4 at 400°C in the absence of oxygen as Pd/H-ZSM-5. CH4 combustion during NOx reduction with CH4 in the presence of oxygen significantly occurred over PdO on SiO2, while less over Pd/H-ZSM-5. The role of zeolite might be slightly different between In/H-ZSM-5 and Pd/H-ZSM-5: the zeolitic porous structure is needed for In/H-ZSM-5 in order to concentrate NO2 adspecies on InO+ sites, which is important for NO reduction with CH4 on In/H-ZSM-5 based catalysts, while the ion-exchangeable ability of zeolite is needed for Pd/H-ZSM-5 in order to make Pd2+ located in a highly dispersed state, on which NO is strongly chemisorbed.  相似文献   

18.
The water-gas shift (WGS) activity of platinum catalysts dispersed on a variety of single metal oxides as well as on composite MOx/Al2O3 and MOx/TiO2 supports (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, La, Ce, Nd, Sm, Eu, Gd, Ho, Er, Tm) has been investigated in the temperature range of 150–500 °C, using a feed composition consisting of 3% CO an 10% H2O. For Pt catalysts supported on single metal oxides, it has been found that both the apparent activation energy of the reaction and the intrinsic rate depend strongly on the nature of the support. In particular, specific activity of Pt at 250 °C is 1–2 orders of magnitude higher when supported on “reducible” compared to “irreducible” metal oxides. For composite Pt/MOx/Al2O3 and Pt/MOx/TiO2 catalysts, it is shown that the presence of MOx results in a shift of the CO conversion curve toward lower reaction temperatures, compared to that obtained for Pt/Al2O3 or Pt/TiO2, respectively. The specific reaction rate is in most cases higher for composite catalysts and varies in a manner which depends on the nature, loading, and primary crystallite size of dispersed MOx. Results are explained by considering that reducibility of small oxide particles increases with decreasing crystallite size, thereby resulting in enhanced WGS activity. Therefore, evidence is provided that the metal oxide support is directly involved in the WGS reaction mechanism and determines to a significant extent the catalytic performance of supported noble metal catalysts. Results of catalytic performance tests obtained under realistic feed composition, consisting of 3% CO, 10% H2O, 20% H2 and 6% CO2, showed that certain composite Pt/MOx/Al2O3 and Pt/MOx/TiO2 catalysts are promising candidates for the development of active WGS catalysts suitable for fuel cell applications.  相似文献   

19.
Urea-SCR, the selective catalytic reduction using urea as reducing agent, has been investigated for about 10 years in detail and today is a well established technique for DeNOx of stationary diesel engines. It is presently also considered as the most promising way to diminish NOx emissions originating from heavy duty vehicles, especially trucks.

The paper discusses the fundamental problems and challenges if urea-SCR is extended to mobile applications. The major goal is the reduction of the required catalyst volume while still maintaining a high selectivity for the SCR reaction over a wide temperature range. The much shorter residence time of the exhaust gas in the catalyst will lead to higher secondary emissions of ammonia and isocyanic acid originating from the reducing agent. Additional problems include the control strategy for urea dosing, the high freezing point of urea, and the long term stability of the catalyst.  相似文献   


20.
We are developing direct decomposition catalysts to decompose the NOx involved in high temperature exhaust gases to N2 and O2 without any reductants such as urea and plan to bring this technology into practice in the 21st century. We expect to create very simple deNOx systems using direct decomposition catalysts applicable to a wide range of fields (co-generation, boilers, automobiles and so on) after overcoming the technical difficulties. Perovskite catalyst and zeolite catalyst are the most promising materials for direct decomposition catalysts. This study focuses on seeking and designing novel NOx direct decomposition catalysts having high activities through theoretical studies using computational chemistry and experimental studies using surface-science techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号