首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
    
The integrin αIIbβ3 is the most abundant integrin on platelets. Upon platelet activation, the integrin changes its conformation (inside-out signalling) and outside-in signalling takes place leading to platelet spreading, platelet aggregation and thrombus formation. Bloodsucking parasites such as mosquitoes, leeches and ticks express anticoagulant and antiplatelet proteins, which represent major sources of lead compounds for the development of useful therapeutic agents for the treatment of haemostatic disorders or cardiovascular diseases. In addition to hematophagous parasites, snakes also possess anticoagulant and antiplatelet proteins in their salivary glands. Two snake venom proteins have been developed into two antiplatelet drugs that are currently used in the clinic. The group of proteins discussed in this review are disintegrins, low molecular weight integrin-binding cysteine-rich proteins, found in snakes, ticks, leeches, worms and horseflies. Finally, we highlight various oral antagonists, which have been tested in clinical trials but were discontinued due to an increase in mortality. No new αIIbβ3 inhibitors are developed since the approval of current platelet antagonists, and structure-function analysis of exogenous disintegrins could help find platelet antagonists with fewer adverse side effects.  相似文献   

3.
Gleditsia sinensis thorns (GST) have been used as a traditional medicine for carbuncles and skin diseases. The purpose of this study was to decide whether non-toxicological levels of water extract of GST (WEGST) are effective in inhibiting the progress of prostate cancer formation and to identify the target molecule involved in the WEGST-mediated inhibitory process of prostate cancer cell migration and in vivo tumor formation. Through the Boyden chamber migration assay, we found that non-toxic levels of WEGST could not attenuate the PC3 migration to the bottom area coated with serum but significantly inhibited PC3 cell migration to the collagen-coated bottom area. We also found that non-toxic levels of WEGST significantly attenuated collagen against adhesion. Interestingly, ectopic administration of WEGST could not affect the expression of α2β1 integrin, which is known as a receptor of collagen. However, when the PC3 cells adhered to a collagen-coated plate, the expression of α2 integrin but not that of β1 integrin was significantly inhibited by the administration of non-toxic levels of WEGST, leading to the inhibition of focal adhesion kinase (FAK) phosphorylation. Furthermore, oral administration of WEGST (25 mg/kg/day) significantly inhibited the size of a PC3 cell-xenografted tumor. Taken together, these results suggest a novel molecular mechanism for WEGST to inhibit prostate cancer progression at particular stages, such as collagen-mediated adhesion and migration, and it might provide further development for the therapeutic use of WEGST in the treatment of prostate cancer progression.  相似文献   

4.
    
Transforming growth factor-β1 (TGF-β1) occurs at high levels at damage sites of vascular endothelial cell layers and regulates the functions of vascular endothelial cells. Reactive sulfur species (RSS), such as cysteine persulfide, glutathione persulfide, and hydrogen persulfide, are cytoprotective factors against electrophiles such as reactive oxygen species and heavy metals. Previously, we reported that sodium trisulfide, a sulfane sulfur donor, promotes vascular endothelial cell proliferation. The objective of the present study was to clarify the regulation and significance of RSS synthesis in vascular endothelial cells after exposure to TGF-β1. Bovine aortic endothelial cells in a culture system were treated with TGF-β1 to assess the expression of intracellular RSS, the effect of RSS on cell proliferation in the presence of TGF-β1, induction of RSS-producing enzymes by TGF-β1, and intracellular signal pathways that mediate this induction. The results suggest that TGF-β1 increased intracellular RSS levels to modulate its inhibitory effect on proliferation. The increased production of RSS, probably high-molecular-mass RSS, was due to the induction of cystathionine γ-lyase and cystathionine β-synthase, which are RSS-producing enzymes, and the induction was mediated by the ALK5-Smad2/3/4 and ALK5-Smad2/3-ATF4 pathways in vascular endothelial cells. TGF-β1 regulates vascular endothelial cell functions such as proliferation and fibrinolytic activity; intracellular high-molecular-mass RSS, which are increased by TGF-β1, may modulate the regulation activity in vascular endothelial cells.  相似文献   

5.
    
A huge effort has been devoted to developing drugs targeting integrins over 30 years, because of the primary roles of integrins in the cell-matrix milieu. Five αv-containing integrins, in the 24 family members, have been a central target of fibrosis. Currently, a small molecule against αvβ1 is undergoing a clinical trial for NASH-associated fibrosis as a rare agent aiming at fibrogenesis. Latent TGFβ activation, a distinct talent of αv-integrins, has been intriguing as a therapeutic target. None of the αv-integrin inhibitors, however, has been in the clinical market. αv-integrins commonly recognize an Arg-Gly-Asp (RGD) sequence, and thus the pharmacophore of inhibitors for the 5-integrins is based on the same RGD structure. The RGD preference of the integrins, at the same time, dilutes ligand specificity, as the 5-integrins share ligands containing RGD sequence such as fibronectin. With the inherent little specificity in both drugs and targets, “disease specificity” has become less important for the inhibitors than blocking as many αv-integrins. In fact, an almighty inhibitor for αv-integrins, pan-αv, was in a clinical trial. On the contrary, approved integrin inhibitors are all specific to target integrins, which are expressed in a cell-type specific manner: αIIbβ3 on platelets, α4β1, α4β7 and αLβ2 on leukocytes. Herein, “disease specific” integrins would serve as attractive targets. α8β1 and α11β1 are selectively expressed in hepatic stellate cells (HSCs) and distinctively induced upon culture activation. The exceptional specificity to activated HSCs reflects a rather “pathology specific” nature of these new integrins. The monoclonal antibodies against α8β1 and α11β1 in preclinical examinations may illuminate the road to the first medical agents.  相似文献   

6.
7.
    
Integrins participate in the pathogenesis and progression of tumors at many stages during the metastatic cascade. However, current evidence for the role of integrins in breast cancer progression is contradictory and seems to be dependent on tumor stage, differentiation status, and microenvironmental influences. While some studies suggest that loss of α2β1 enhances cancer metastasis, other studies suggest that this integrin is pro-tumorigenic. However, few studies have looked at α2β1 in the context of bone metastasis. In this study, we aimed to understand the role of α2β1 integrin in breast cancer metastasis to bone. To address this, we utilized in vivo models of breast cancer metastasis to bone using MDA-MB-231 cells transfected with an α2 expression plasmid (MDA-OEα2). MDA cells overexpressing the α2 integrin subunit had increased primary tumor growth and dissemination to bone but had no change in tumor establishment and bone destruction. Further in vitro analysis revealed that tumors in the bone have decreased α2β1 expression and increased osteolytic signaling compared to primary tumors. Taken together, these data suggest an inverse correlation between α2β1 expression and bone-metastatic potential. Inhibiting α2β1 expression may be beneficial to limit the expansion of primary tumors but could be harmful once tumors have established in bone.  相似文献   

8.
    
The tumor microenvironment plays a critical role in defining the growth and malignancy of solid tumors. Extracellular matrix (ECM) proteins such as collagen, vitronectin, and fibronectin are major components of the tumor microenvironment. Tumor growth-promoting reciprocal interaction between ECM and cytoplasmic proteins is regulated by the cell surface receptors called integrins. This study investigated the mechanism by which integrin β1 promotes pancreatic tumor growth. In MIA PaCa-2 pancreatic cancer cell line, the loss of integrin β1 protein reduced the ability of cells to proliferate in a 3D matrix and compromised the ability to form a focal adhesion complex. Decreased expression of integrin α5 was observed in KO cells, which resulted in impaired cell spreading and adhesion on vitronectin and fibronectin. Reduced expression of the integrin-associated protein, kindlin-2 was also recorded. The downregulation of kindlin-2 decreased the phosphorylation of Smad2/3 by reducing the expression of TGF-β receptor 2. These results unravel a new mechanism of integrin β1 in tumor growth by modifying the expression of kindlin-2 and TGF-β receptor 2 signaling.  相似文献   

9.
Increasing studies suggest that inflammatory processes in the central nervous system mediated by microglial activation plays an important role in numerous neurodegenerative diseases. Development of planning for microglial suppression is considered a key strategy in the search for neuroprotection. Paeonol is a major phenolic component of Moutan Cortex, widely used as a nutrient supplement in Chinese medicine. In this study, we investigated the effects of paeonol on microglial cells stimulated by inflammagens. Paeonol significantly inhibited the release of nitric oxide (NO) and the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Treatment with paeonol also reduced reactive oxygen species (ROS) production and inhibited an ATP-induced increased cell migratory activity. Furthermore, the inhibitory effects of neuroinflammation by paeonol were found to be regulated by phosphorylated adenosine monophosphate-activated protein kinase-α (AMPK-α) and glycogen synthase kinase 3 α/β (GSK 3α/β). Treatment with AMPK or GSK3 inhibitors reverse the inhibitory effect of neuroinflammation by paeonol in microglial cells. Furthermore, paeonol treatment also showed significant improvement in the rotarod performance and microglial activation in the mouse model as well. The present study is the first to report a novel inhibitory role of paeonol on neuroinflammation, and presents a new candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.  相似文献   

10.
    
The P2Y2 receptor (P2Y2R) is a G protein-coupled receptor that is activated by extracellular ATP and UTP, to a similar extent. This allows it to play roles in the cell’s response to the (increased) release of these nucleotides, e.g., in response to stress situations, including mechanical stress and oxygen deprivation. However, despite its involvement in important (patho)physiological processes, the intracellular signaling induced by the P2Y2R remains incompletely described. Therefore, this study implemented a NanoBiT® functional complementation assay to shed more light on the recruitment of β-arrestins (βarr1 and βarr2) upon receptor activation. More specifically, upon determination of the optimal configuration in this assay system, the effect of different (receptor) residues/regions on βarr recruitment to the receptor in response to ATP or UTP was estimated. To this end, the linker was shortened, the C-terminal tail was truncated, and phosphorylatable residues in the third intracellular loop of the receptor were mutated, in either singly or multiply adapted constructs. The results showed that none of the introduced adaptations entirely abolished the recruitment of either βarr, although EC50 values differed and time-luminescence profiles appeared to be qualitatively altered. The results hint at the C-terminal tail modulating the interaction with βarr, while not being indispensable.  相似文献   

11.
12.
    
Integrins are necessary for cell adhesion, migration, and positioning. Essential for inducing signalling events for cell survival, proliferation, and differentiation, they also trigger a variety of signal transduction pathways involved in mediating invasion, metastasis, and squamous-cell carcinoma. Several recent studies have demonstrated that the up- and down-regulation of the expression of αv and other integrins can be a potent marker of malignant diseases and patient prognosis. This review focuses on an arginine-glycine-aspartic acid (RGD)-dependent integrin αVβ6, its biology, and its role in healthy humans. We examine the implications of αVβ6 in cancer progression and the promotion of epithelial-mesenchymal transition (EMT) by contributing to the activation of transforming growth factor beta TGF-β. Although αvβ6 is crucial for proper function in healthy people, it has also been validated as a target for cancer treatment. This review briefly considers aspects of targeting αVβ6 in the clinic via different therapeutic modalities.  相似文献   

13.
    
Transmembrane glycoprotein integrins play crucial roles in biochemical processes, and by their inhibition or activation, different signal pathways can be disrupted, leading to abnormal physiological functions. We have previously demonstrated the inhibitory effect of glyphosate herbicide’s active ingredient on cell adhesion and its αvβ3 integrin antagonist effect. Therefore, it appeared particularly exciting to investigate inhibition of glyphosate and its metabolites on a wider range of Arg-Gly-Asp (RGD) binding integrins, namely αvβ3, α5β1 and αllbβ3. Thus, the purpose of this study was to assess how extended the inhibitory effect observed for glyphosate on the integrin αvβ3 is in terms of other RGD integrins and other structurally or metabolically related derivatives of glyphosate. Five different experimental setups using enzyme-linked immunosorbent assays were applied: (i) αvβ3 binding to a synthetic polymer containing RGD; (ii) αvβ3 binding to its extracellular matrix (ECM) protein, vitronectin; (iii) α5β1 binding to the above polymer containing RGD; (iv) αllbβ3 binding to its ECM protein, fibrinogen and (v) αvβ3 binding to the SARS-CoV-2 spike protein receptor binding domain. Total inhibition of αvβ3 binding to RGD was detected for glyphosate and its main metabolite, aminomethylphosphonic acid (AMPA), as well as for acetylglycine on α5β1 binding to RGD.  相似文献   

14.
    
Epidemiological studies have implied that the nonsteroidal anti-inflammatory drug (NSAID) indomethacin slows the development and progression of Alzheimer’s disease (AD). However, the underlying mechanisms are notably understudied. Using a chimeric mouse/human amyloid precursor protein (Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9) (APP/PS1) expressing transgenic (Tg) mice and neuroblastoma (N) 2a cells as in vivo and in vitro models, we revealed the mechanisms of indomethacin in ameliorating the cognitive decline of AD. By screening AD-associated genes, we observed that a marked increase in the expression of α2-macroglobulin (A2M) was markedly induced after treatment with indomethacin. Mechanistically, upregulation of A2M was caused by the inhibition of cyclooxygenase-2 (COX-2) and lipocalin-type prostaglandin D synthase (L-PGDS), which are responsible for the synthesis of prostaglandin (PG)H2 and PGD2, respectively. The reduction in PGD2 levels induced by indomethacin alleviated the suppression of A2M expression through a PGD2 receptor 2 (CRTH2)-dependent mechanism. Highly activated A2M not only disrupted the production and aggregation of β-amyloid protein (Aβ) but also induced Aβ efflux from the brain. More interestingly, indomethacin decreased the degradation of the A2M receptor, low-density lipoprotein receptor-related protein 1 (LRP1), which facilitated the brain efflux of Aβ. Through the aforementioned mechanisms, indomethacin ameliorated cognitive decline in APP/PS1 Tg mice by decreasing Aβ production and clearing Aβ from the brains of AD mice.  相似文献   

15.
Although hyperhomocysteinemia (HHcy) elicits lower than normal body weights and skeletal muscle weakness, the mechanisms remain unclear. Despite the fact that HHcy-mediated enhancement in ROS and consequent damage to regulators of different cellular processes is relatively well established in other organs, the nature of such events is unknown in skeletal muscles. Previously, we reported that HHcy attenuation of PGC-1α and HIF-1α levels enhanced the likelihood of muscle atrophy and declined function after ischemia. In the current study, we examined muscle levels of homocysteine (Hcy) metabolizing enzymes, anti-oxidant capacity and focused on protein modifications that might compromise PGC-1α function during ischemic angiogenesis. Although skeletal muscles express the key enzyme (MTHFR) that participates in re-methylation of Hcy into methionine, lack of trans-sulfuration enzymes (CBS and CSE) make skeletal muscles more susceptible to the HHcy-induced myopathy. Our study indicates that elevated Hcy levels in the CBS−/+ mouse skeletal muscles caused diminished anti-oxidant capacity and contributed to enhanced total protein as well as PGC-1α specific nitrotyrosylation after ischemia. Furthermore, in the presence of NO donor SNP, either homocysteine (Hcy) or its cyclized version, Hcy thiolactone, not only increased PGC-1α specific protein nitrotyrosylation but also reduced its association with PPARγ in C2C12 cells. Altogether these results suggest that HHcy exerts its myopathic effects via reduction of the PGC-1/PPARγ axis after ischemia.  相似文献   

16.
    
The α2δ auxiliary subunits of voltage-gated calcium channels (VGCC) were traditionally regarded as modulators of biophysical channel properties. In recent years, channel-independent functions of these subunits, such as involvement in synapse formation, have been identified. In the central nervous system, α2δ isoforms 1, 2, and 3 are strongly expressed, regulating glutamatergic synapse formation by a presynaptic mechanism. Although the α2δ-4 isoform is predominantly found in the retina with very little expression in the brain, it was recently linked to brain functions. In contrast, Cachd1, a novel α2δ-like protein, shows strong expression in brain, but its function in neurons is not yet known. Therefore, we aimed to investigate the presynaptic functions of α2δ-4 and Cachd1 by expressing individual proteins in cultured hippocampal neurons. Both α2δ-4 and Cachd1 are expressed in the presynaptic membrane and could rescue a severe synaptic defect present in triple knockout/knockdown neurons that lacked the α2δ-1-3 isoforms (α2δ TKO/KD). This observation suggests that presynaptic localization and the regulation of synapse formation in glutamatergic neurons is a general feature of α2δ proteins. In contrast to this redundant presynaptic function, α2δ-4 and Cachd1 differentially regulate the abundance of presynaptic calcium channels and the amplitude of presynaptic calcium transients. These functional differences may be caused by subtle isoform-specific differences in α12δ protein–protein interactions, as revealed by structural homology modelling. Taken together, our study identifies both α2δ-4 and Cachd1 as presynaptic regulators of synapse formation, differentiation, and calcium channel functions that can at least partially compensate for the loss of α2δ-1-3. Moreover, we show that regulating glutamatergic synapse formation and differentiation is a critical and surprisingly redundant function of α2δ and Cachd1.  相似文献   

17.
    
Glial cells participate actively in the early cognitive decline in Alzheimer’s disease (AD) pathology. In fact, recent studies have found molecular and functional abnormalities in astrocytes and microglia in both animal models and brains of patients suffering from this pathology. In this regard, reactive gliosis intimately associated with amyloid plaques has become a pathological hallmark of AD. A recent study from our laboratory reports that astrocyte reactivity is caused by a direct interaction between amyloid beta (Aβ) oligomers and integrin β1. Here, we have generated four recombinant peptides including the extracellular domain of integrin β1, and evaluated their capacity both to bind in vitro to Aβ oligomers and to prevent in vivo Aβ oligomer-induced gliosis and endoplasmic reticulum stress. We have identified the minimal region of integrin β1 that binds to Aβ oligomers. This region is called signal peptide and corresponds to the first 20 amino acids of the integrin β1 N-terminal domain. This recombinant integrin β1 signal peptide prevented Aβ oligomer-induced ROS generation in primary astrocyte cultures. Furthermore, we carried out intrahippocampal injection in adult mice of recombinant integrin β1 signal peptide combined with or without Aβ oligomers and we evaluated by immunohistochemistry both astrogliosis and microgliosis as well as endoplasmic reticulum stress. The results show that recombinant integrin β1 signal peptide precluded both astrogliosis and microgliosis and endoplasmic reticulum stress mediated by Aβ oligomers in vivo. We have developed a molecular tool that blocks the activation of the molecular cascade that mediates gliosis via Aβ oligomer/integrin β1 signaling.  相似文献   

18.
19.
Recently, various immunosuppressant drugs have been shown to induce hair growth in normal hair as well as in alopecia areata and androgenic alopecia; however, the responsible mechanism has not yet been fully elucidated. In this study, we investigate the influence of mycophenolate (MPA), an immunosuppressant, on the proliferation of human dermal papilla cells (hDPCs) and on the growth of human hair follicles following catagen induction with interferon (IFN)-γ. IFN-γ was found to reduce β-catenin, an activator of hair follicle growth, and activate glycogen synthase kinase (GSK)-3β, and enhance expression of the Wnt inhibitor DKK-1 and catagen inducer transforming growth factor (TGF)-β2. IFN-γ inhibited expression of ALP and other dermal papillar cells (DPCs) markers such as Axin2, IGF-1, and FGF 7 and 10. MPA increased β-catenin in IFN-γ-treated hDPCs leading to its nuclear accumulation via inhibition of GSK3β and reduction of DKK-1. Furthermore, MPA significantly increased expression of ALP and other DPC marker genes but inhibited expression of TGF-β2. Therefore, we demonstrate for the first time that IFN-γ induces catagen-like changes in hDPCs and in hair follicles via inhibition of Wnt/β-catenin signaling, and that MPA stabilizes β-catenin by inhibiting GSK3β leading to increased β-catenin target gene and DP signature gene expression, which may, in part, counteract IFN-γ-induced catagen in hDPCs.  相似文献   

20.
Transforming growth factor (TGF)-β1, a cytokine that can be expressed in the brain, is a key regulator of the brain’s responses to injury and inflammation. Alzheimer’s disease (AD), the most common neurodegenerative disorder, involves inflammatory processes in the brain in addition to the hallmarks, amyloid-β (Aβ) plaques and neurofibrillary tangles. Recently, we have shown that T-helper (Th) 17 cells, a subpopulation of CD4+ T-cells with high proinflammation, also participate in the brain inflammatory process of AD. However, it is poorly known whether TGF-β1 ameliorates the lymphocyte-mediated neuroinflammation and, thereby, alleviates neurodegeneration in AD. Herein, we administered TGF-β1 via the intracerebroventricle (ICV) in AD model rats, by Aβ1–42 injection in both sides of the hippocampus, to show the neuroprotection of TGF-β1. The TGF-β1 administration after the Aβ1–42 injection ameliorated cognitive deficit and neuronal loss and apoptosis, reduced amyloid precursor protein (APP) expression, elevated protein phosphatase (PP)2A expression, attenuated glial activation and alleviated the imbalance of the pro-inflammatory/anti-inflammatory responses of T-lymphocytes, compared to the Aβ1–42 injection alone. These findings demonstrate that TGF-β1 provides protection against AD neurodegeneration and suggest that the TGF-β1 neuroprotection is implemented by the alleviation of glial and T-cell-mediated neuroinflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号