首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A single-chip dual-band tri-mode CMOS transceiver that implements the RF and analog front-end for an IEEE 802.11a/b/g wireless LAN is described. The chip is implemented in a 0.25-/spl mu/m CMOS technology and occupies a total silicon area of 23 mm/sup 2/. The IC transmits 9 dBm/8 dBm error vector magnitude (EVM)-compliant output power for a 64-QAM OFDM signal. The overall receiver noise figure is 5.5/4.5 dB at 5 GHz/2.4 GHz. The phase noise is -105 dBc/Hz at a 10-kHz offset and the spurs are below -64 dBc when measured at the 5-GHz transmitter output.  相似文献   

2.
A single-chip dual-band 5.15-5.35-GHz and 2.4-2.5-GHz zero-IF transceiver for IEEE 802.11a/b/g WLAN systems is fabricated on a 0.18-/spl mu/m CMOS technology. It utilizes an innovative architecture including feedback paths that enable digital calibration to help eliminate analog circuit imperfections such as transmit and receive I/Q mismatch. The dual-band receive paths feature a 4.8-dB (3.5-dB) noise figure at 5.25 GHz (2.45 GHz). The corresponding sensitivity at 54 Mb/s operation is -76 dBm for 802.11a and -77 dBm for 802.11g, both referred at the input of the chip. The transmit chain achieves output 1-dB compression at 6 dBm (9 dBm) at 5 GHz (2.4 GHz) operation. Digital calibration helps achieve an error vector magnitude (EVM) of -33 dB (-31 dB) at 5 GHz (2.4 GHz) while transmitting -4 dBm at 54Mb/s. The die size is 19.3 mm/sup 2/ and the power consumption is 260 mW for the receiver and 320 mW (270 mW) for the transmitter at 5 GHz (2.4 GHz) operation.  相似文献   

3.
A dual-mode transceiver integrates the transmitter of 0-dBm output power and the receiver for both Bluetooth with -87 dBm sensitivity and 802.11b with -86 dBm sensitivity in a single chip. A direct-conversion architecture enables the maximum reuse and the optimal current consumption of the various building blocks in each mode for a low-cost and low-power solution. A single-ended power-amplifer (PA) driver transmits the nominal output power of 0 dBm with 18-dB gain control in 3-dB steps. Only little area overhead is required in the baseband active filter and programmable gain amplifier (PGA) to provide the dual-mode capability with optimized current consumption. The DC-offset cancellation scheme coupled with PGAs implements the very low high-pass cutoff frequency with a smaller area than required by a simple coupling capacitor. Fabricated in 0.25-/spl mu/m CMOS process, the die area is 8.4 mm/sup 2/ including pads, and current consumption in RX is 50 mA for Bluetooth and 65 mA for 802.11b from a 2.7-V supply.  相似文献   

4.
The drive for cost reduction has led to the use of CMOS technology in the implementation of highly integrated radios. This paper presents a single-chip 5-GHz fully integrated direct conversion transceiver for IEEE 802.11a WLAN systems, manufactured in 0.18-/spl mu/m CMOS. The IC features an innovative system architecture which takes advantage of the computing resources of the digital companion chip in order to eliminate I/Q mismatch and achieve accurately matched baseband filters. The integrated voltage-controlled oscillator and synthesizer achieve an integrated phase noise of less than 0.8/spl deg/ rms. The receiver has an overall noise figure of 5.2 dB and achieves sensitivity of -75 dBm at 54-Mb/s operation, both referred to the IC input. The transmit error vector magnitude is -33 dB at -5-dBm output power from the integrated power-amplifier driver amplifier. The transceiver occupies an area of 18.5 mm/sup 2/.  相似文献   

5.
High-level integration of the Bluetooth and 802.11b WLAN radio systems in the 2.4-GHz ISM band is demonstrated in scaled CMOS. A dual-mode RF transceiver IC implements all transmit and receive functions including the low-noise amplifier (LNA), 0-dBm power amplifier, up/down mixers, synthesizers, channel filtering, and limiting/automatic gain control for both standards in a single chip without doubling the required silicon area to reduce the combined system cost. This is achieved by sharing the frequency up/down conversion circuits in the RF section and performing the required baseband channel filtering and gain functions with just one set of reconfigurable channel filter and amplifier for both modes. A chip implemented in 0.18-/spl mu/m CMOS occupies 4/spl times/4 mm/sup 2/ including pad and consumes 60 and 40 mA for RX and TX modes, respectively. The dual-mode receiver exhibits -80-dBm sensitivity at 0.1% BER in Bluetooth mode and at 12-dB SNR in WLAN mode.  相似文献   

6.
A fully integrated system-on-a-chip (SOC) intended for use in 802.11b applications is built in 0.18-/spl mu/m CMOS. All of the radio building blocks including the power amplifier (PA), the phase-locked loop (PLL) filter, and the antenna switch, as well as the complete baseband physical layer and the medium access control (MAC) sections, have been integrated into a single chip. The radio tuned to 2.4 GHz dissipates 165 mW in the receive mode and 360 mW in the transmit mode from a 1.8-V supply. The receiver achieves a typical noise figure of 6 dB and -88-dBm sensitivity at 11 Mb/s rate. The transmitter delivers a nominal output power of 13 dBm at the antenna. The transmitter 1-dB compression point is 18 dBm and has over 20 dB of gain range.  相似文献   

7.
A fully integrated dual-band transceiver is implemented in 0.18-/spl mu/m CMOS and is compliant with the IEEE 802.11a/b/g standards. The direct-conversion transceiver occupies 12 mm/sup 2/ in a QFN-40 package. A fractional-N synthesizer operates at twice the channel frequency, covering continuously bands from 4.9 to 5.9 GHz, as well as the 2.4-GHz band. The 5- and 2.4-GHz receivers achieve a sensitivity level below -73 dBm in the 54-Mb/s mode and below -93 dBm in the 6-Mb/s mode, while consuming 230 mW. A fast RSSI-channel power-detection system allows to power-down signal processing in the listen mode. The 5- and 2.4-GHz transmitters implement a wideband Cartesian feedback loop for enhanced EVM performances and improved spectrum masks compliance. The transmitters deliver -2-dBm average power with an EVM of 3% in the 54-Mb/s mode while consuming 300 mW.  相似文献   

8.
A dual-band trimode radio fully compliant with the IEEE 802.11a, b, and g standards is implemented in a 0.18-/spl mu/m CMOS process and packaged in a 48-pin QFN package. The transceiver achieves a receiver noise figure of 4.9/5.6 dB for the 2.4-GHz/5-GHz bands, respectively, and a transmit error vector magnitude (EVM) of 2.5% for both bands. The transmit output power is digitally controlled, allowing per-packet power control as required by the forthcoming 802.11 h standard. A quadrature accuracy of 0.3/spl deg/ in phase and 0.05 dB in amplitude is achieved through careful analysis and design of the I/Q generation parts of the local oscillator. The local oscillators achieve a total integrated phase noise of better than -34 dBc. Compatibility with multiple baseband chips is ensured by flexible interfaces toward the A/D and D/A converters, as well as a calibration scheme not requiring any baseband support. The chip passes /spl plusmn/2 kV human body model ESD testing on all pins, including the RF pins. The total die area is 12 mm/sup 2/. The power consumption is 207 mW in the receive mode and 247 mW in the transmit mode using a 1.8-V supply.  相似文献   

9.
龚正  楚晓杰  雷倩倩  林敏  石寅 《半导体学报》2012,33(11):115001-7
本文提出了一种应用于直接变频无线局域网收发机的模拟基带电路,该电路采用标准的0.13微米CMOS工艺实现,包括了采用有源RC方式实现的接收4阶椭圆低通滤波器、发射3阶切比雪夫低通滤波器、包含直流失调消除伺服环路的接收可变增益放大器及片上输出缓冲器。芯片面积共1.26平方毫米。接收基带链路增益可在-11dB至49dB间以2dB步长调节。相应地,基带接收输入等效噪声电压(IRN)在50 nV/sqrt(Hz) 至30.2 nV/ sqrt(Hz)间变化而带内输入三阶交调(IIP3)在21dBm至-41dBm间变化。接收及发射低通滤波器的转折频率可在5MHz、10MHz及20MHz之间选择以符合包含802.11b/g/n的多种标准的要求。接收基带I、Q两路的增益可在-1.6dB至0.9dB之间以0.1dB的步长分别调节以实现发射IQ增益失调校正。通过采用基于相同积分器的椭圆滤波器综合技术及作用于电容阵列的全局补偿技术,接收滤波器的功耗显著降低。工作于1.2V电源电压时,整个芯片的基带接收及发射链路分别消耗26.8mA及8mA电流。  相似文献   

10.
《Electronics letters》2007,43(20):1096-1098
A CMOS dual-band ultra-wideband low noise amplifier (LNA) with interference rejection is presented. The proposed LNA employs a current reuse structure to reduce power consumption and an active notch filter to produce in-band rejection in the 5 GHz WLAN frequency band. The load tank of the current reuse stage is optimised to provide an additional out-band attenuation in the 2.4 GHz WLAN band. Measurement shows a peak gain of 19.7 dB in the low band (3-5 GHz) and 20.3 dB in the high band (6-10 GHz), while the in-band and out-band maximum rejections are 19.6 and 12.8 dB, respectively.  相似文献   

11.
This paper describes the results of an implementation of a Bluetooth radio in a 0.18-/spl mu/m CMOS process. A low-IF image-reject conversion architecture is used for the receiver. The transmitter uses direct IQ-upconversion. The VCO runs at 4.8-5.0 GHz, thus facilitating the generation of 0/spl deg/ and 90/spl deg/ signals for both the receiver and transmitter. By using an inductor-less LNA and the extensive use of mismatch simulations, the smallest silicon area for a Bluetooth radio implementation so far can be reached: 5.5 mm/sup 2/. The transceiver consumes 30 mA in receive mode and 35 mA in transmit mode from a 2.5 to 3.0-V power supply. As the radio operates on the same die as baseband and SW, the crosstalk-on-silicon is an important issue. This crosstalk problem was taken into consideration from the start of the project. Sensitivity was measured at -82 dBm.  相似文献   

12.
A dual band, fully integrated, low phase-noise and low-power LC voltage-controlled oscillator (VCO) operating at the 2.4-GHz industrial scientific and medical band and 5.15-GHz unlicensed national information infrastructure band has been demonstrated in an 0.18-/spl mu/m CMOS process. At 1.8-V power supply voltage, the power dissipation is only 5.4mW for a 2.4-GHz band and 8mW for a 5.15-GHz band. The proposed VCO features phase-noise of -135dBc/Hz at 3-MHz offset frequency away from the carrier frequency of 2.74GHz and -126dBc/Hz at 3-MHz offset frequency away from 5.49GHz. The oscillator is tuned from 2.2 to 2.85GHz in the low band (2.4-GHz band) and from 4.4 to 5.7GHz in the high band (5.15-GHz band).  相似文献   

13.
The paper describes a bioluminescence detection lab-on-chip consisting of a fiber-optic faceplate with immobilized luminescent reporters/probes that is directly coupled to an optical detection and processing CMOS system-on-chip (SoC) fabricated in a 0.18-/spl mu/m process. The lab-on-chip is customized for such applications as determining gene expression using reporter gene assays, determining intracellular ATP, and sequencing DNA. The CMOS detection SoC integrates an 8 /spl times/ 16 pixel array having the same pitch as the assay site array, a 128-channel 13-bit ADC, and column-level DSP, and is fabricated in a 0.18-/spl mu/m image sensor process. The chip is capable of detecting emission rates below 10/sup -6/ lux over 30 s of integration time at room temperature. In addition to directly coupling and matching the assay site array to the photodetector array, this low light detection is achieved by a number of techniques, including the use of very low dark current photodetectors, low-noise differential circuits, high-resolution analog-to-digital conversion, background subtraction, correlated multiple sampling, and multiple digitizations and averaging to reduce read noise. Electrical and optical characterization results as well as preliminary biological testing results are reported.  相似文献   

14.
Scaling of CMOS technologies has a great impact on analog design. The most severe consequence is the reduction of the voltage supply. In this paper, a low voltage, low power, AC-coupled folded-switching mixer with current-reuse is presented. The main advantages of the introduced mixer topology are: high voltage gain, moderate noise figure, moderate linearity, and operation at low supply voltages. Insight into the mixer operation is given by analyzing voltage gain, noise figure (NF), linearity (IIP3), and DC stability. The mixer is designed and implemented in 0.18-/spl mu/m CMOS technology with metal-insulator-metal (MIM) capacitors as an option. The active chip area is 160 /spl mu/m/spl times/200 /spl mu/m. At 2.4 GHz a single side band (SSB) noise figure of 13.9 dB, a voltage gain of 11.9 dB and an IIP3 of -3 dBm are measured at a supply voltage of 1 V and with a power consumption of only 3.2 mW. At a supply voltage of 1.8 V, an SSB noise figure of 12.9 dB, a voltage gain of 16 dB and an IIP3 of 1 dBm are measured at a power consumption of 8.1 mW.  相似文献   

15.
A fully integrated matrix amplifier with two rows and four columns (2-by-4) fabricated in a three-layer metal 0.18-/spl mu/m silicon-on-insulator (SOI) CMOS process is presented. It exhibits an average pass-band gain of 15 dB and a unity-gain bandwidth of 12.5 GHz. The input and output ports are matched to 50 /spl Omega/ using m-derived half sections; the measured S/sub 11/ and S/sub 22/ values exceed -7 and -12 dB, respectively. Integrated in 2.0/spl times/2.9mm/sup 2/, it dissipates 233.4 mW total from 2.4- and 1.8-V power supplies.  相似文献   

16.
A fully integrated dual-mode CMOS transceiver tuned to 2.4 GHz consumes 65 mA in receive mode and 78 mA in transmit mode from a 3-V supply. The radio includes all the receive and transmit building blocks, such as frequency synthesizer, voltage-controlled oscillator (VCO), and power amplifier, and is intended for use in 802.11b and Bluetooth applications. The Bluetooth receiver uses a low-IF architecture for higher level of integration and lower power consumption, while the 802.11b receiver is direct conversion. The receiver achieves a typical sensitivity of -88 dBm at 11 Mb/s for 802.11b, and -83 dBm for Bluetooth mode. The receiver minimum IIP3 is -8 dBm. Both transmitters use a direct-conversion architecture, and deliver a nominal output power of 0 dBm, with a power range of 20 dB in 2-dB steps.  相似文献   

17.
A low voltage CMOS RF front-end for IEEE 802.11b WLAN transceiver is presented. The problems to implement the low voltage design and the on-chip input/output impedance matching are considered, and some improved circuits are presented to overcome the problems. Especially, a single-end input, differential output double balanced mixer with an on-chip bias loop is analyzed in detail to show its advantages over other mixers. The transceiver RF front-end has been implemented in 0.18 um CMOS process, the measured results show that the Rx front-end achieves 5.23 dB noise figure, 12.7 dB power gain (50 ohm load), −18 dBm input 1 dB compression point (ICP) and −7 dBm IIP3, and the Tx front-end could output +2.1 dBm power into 50 ohm load with 23.8 dB power gain. The transceiver RF front-end draws 13.6 mA current from a supply voltage of 1.8 V in receive mode and 27.6 mA current in transmit mode. The transceiver RF front-end could satisfy the performance requirements of IEEE802.11b WLAN standard. Supported by the National Natural Science Foundation of China, No. 90407006 and No. 60475018.  相似文献   

18.
We have developed a complete single-chip GPS receiver using 0.18-/spl mu/m CMOS to meet several important requirements, such as small size, low power, low cost, and high sensitivity for mobile GPS applications. This is the first case in which a radio has been successfully combined with a baseband processor, such as SoC, in a GPS receiver. The GPS chip, with a total size of 6.3 mm /spl times/ 6.3 mm, contains a 2.3 mm /spl times/ 2.0 mm radio part, including RF front end, phase-locked loops, IF functions, and 500 K gates of baseband logic, including mask ROM, SRAM, and dual port SRAM . It is fabricated using 0.18-/spl mu/m CMOS technology with a MIM capacitor and operates from a 1.6-2.0-V power supply. Experimental results show a very low power consumption of, typically, 57 mW for a fully functional chip including baseband, and a high sensitivity of -152dBm. Through countermeasures against substrate coupling noise from the digital part, the high sensitivity was successfully achieved without any external low-noise amplifier.  相似文献   

19.
A compact ultra-broadband MMIC-compatible uniplanar balun has been developed using offset air-gap coupler. The offset air-gap coupler presents tight coupling and low conductor loss, and thus allows the balun to show low loss at mm-wave frequencies. The measured insertion loss was less than 2 dB from 26 to 55 GHz, and amplitude and phase imbalance was less than /spl plusmn/1dB and 5/spl deg/, respectively over a wide frequency range from 27 to 69 GHz.  相似文献   

20.
A downconversion double-balanced oscillator mixer using 0.18-/spl mu/m CMOS technology is proposed in this paper. This oscillator mixer consists of an individual mixer stacked on a voltage-controlled oscillator (VCO). The stacked structure allows entire mixer current to be reused by the VCO cross-coupled pair to reduce the total current consumption of the individual VCO and mixer. Using individual supply voltages and eliminating the tail current source, the stacked topology requires 1.0-V low supply voltage. The oscillator mixer achieves a voltage conversion gain of 10.9 dB at 4.2-GHz RF frequency. The oscillator mixer exhibits a tuning range of 11.5% and a single-sideband noise figure of 14.5 dB. The dc power consumption is 0.2 mW for the mixer and 2.94 mW for the VCO. This oscillator mixer requires a lower supply voltage and achieves a higher operating frequency among recently reported Si-based self-oscillating mixers and mixer oscillators. The mixer in this oscillator mixer also achieves a low power consumption compared with recently reported low-power mixers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号